<u> PENSOFT</u>,

SENCKENBERG world of biodiversity

A taxonomic re-assessment of *Oligodon cinereus* (Günther, 1864) (Squamata, Serpentes, Colubridae) populations from southern Indochina

Platon V. Yushchenko^{1,2,*}, Justin L. Lee^{3,4,*}, Thy Neang⁵, Hun Seiha⁶, Nguyen Van Tan⁷, Gernot Vogel⁸, Nikolay A. Poyarkov Jr.^{1,2}

- 1 Joint Russian-Vietnamese Tropical Research and Technological Center, 63 Nguyen Van Huyen Road, Nghia Do, Cau Giay, Hanoi, Vietnam
- 2 Department of Vertebrate Zoology, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, Moscow 119991, Russia
- 3 Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, 19085 USA
- 4 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013 USA
- 5 Wild Earth Allies, 77a, Street Beton, Bayap Village, Sangkat Phnom Penh Thmei, Khan Sen Sok, Phnom Penh, Cambodia
- 6 Department of Agronomy, Faculty of Agriculture and Food Processing, Meanchey University, Krong Serei Sophaon, Banteay Meanchey Province, Cambodia
- 7 Institute for Research and Training in Medicine, Biology and Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
- 8 Society for Southeast Asian Herpetology, Im Sand 3, 69115 Heidelberg, Germany
- * Both authors contributed equally

https://zoobank.org/CA40BFB9-9FF4-4F2E-8337-297A9CD6E6C5

Corresponding authors: Nikolay A. Poyarkov Jr. (n.poyarkov@gmail.com), Justin L. Lee (justinllee@verizon.net)

Academic editor Uwe Fritz Received 4	August 2022 Accepted 1 December 2022	2 Published 25 January 2023
--	--------------------------------------	--------------------------------------

Citation: Yushchenko PV, Lee JL, Neang T, Seiha H, Tan NV, Vogel G, Poyarkov Jr. NA (2023) A taxonomic re-assessment of *Oligodon cinereus* (Günther, 1864) (Squamata, Serpentes, Colubridae) populations from southern Indochina. Vertebrate Zoology 73 75–96. https://doi.org/10.3897/vz.73.e91230

Abstract

The ashy kukri snake *Oligodon cinereus* (Günther, 1864) is a widely distributed and morphologically variable species found throughout mainland Southeast Asia. In this paper, we re-assessed the taxonomic status of *O. cinereus* populations found in southern Indochina (southern Vietnam, Cambodia, and southern Laos), including the recently described Cat Tien kukri snake *Oligodon cattienensis* Vassilieva et al., 2013, which was previously confused with this species. Phylogenetic analyses using mitochondrial DNA from the 12S–16S ribosomal subunit and cytochrome *b* gene revealed that *O. cattienensis* is embedded in a mixed clade containing samples of the subspecies *O. cinereus pallidocinctus*, which bears a dorsal color pattern with white crossbars and black edges. This clade forms a strongly supported sister group with a topotypic sample of *O. cinereus cinereus*, representing populations bearing a uniform dorsal color pattern and slight reticulate markings, however the genetic divergence between the two clades is very low. The morphological characters used to distinguish *O. cattienensis* from *O. cinereus* sensu lato broadly overlap and supposed differences in hemipenial morphology between the two taxa are due to outdated terminologies used to describe the organ. We relegate both *O. cattienensis* and *O. cinereus pallidocinctus* to the junior synonymy of *O. cinereus* and consider all color patterns of this species found near the type locality in Cambodia, southern Laos, and southern Vietnam to represent *O. cinereus* sensu stricto. Future integrative investigations across the range of *O. cinereus* sensu lato are needed to resolve the status of the remaining subspecies and synonyms associated with this taxon. Problems associated with hemipenial morphology and *Oligodon* systematics are also discussed.

Keywords

Biodiversity, morphology, Oligodon cattienensis, Reptilia, Southeast Asia, systematics

Copyright Platon V. Yushchenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Kukri snakes of the genus Oligodon Fitzinger, 1826 are a highly diverse group of colubrid snakes distributed across Asia presently containing 90 recognized species (Nguyen et al. 2022; Uetz et al. 2022), making it the second largest snake genus in the world, exceeded only by the neotropical earthsnake genus Atractus Wagner, 1828 (Arteaga et al. 2022; Passos et al. 2022; Uetz et al. 2022). Despite being one of the most species-rich snake clades in the world, most members are poorly studied because of their secretive behavior. In the past decade, several new species of Oligodon have been described, but most are based on a small number of specimens (David et al. 2012, 2022; David and Vogel 2012; Neang et al. 2012; Vassilieva et al. 2013; Vassilieva 2015; Nguyen et al. 2016, 2017, 2022; Pauwels et al. 2017; Sumontha et al. 2017; Nguyen et al. 2020; Amarasinghe et al. 2021; Mirza et al. 2021; Pauwels et al. 2021; Bandara et al. 2022). Moreover, a majority of recently described kukri snakes have been diagnosed based exclusively on morphology without the incorporation of tissue samples for molecular phylogenetic analyses. Since it is oftentimes difficult to obtain large sample sizes of specimens, the species boundaries of several Oligodon remain unclear, and some historically described taxa have been re-assessed and subsequently synonymized with other wide-ranging, morphologically variable species (e.g., Tillack 2008; Tillack and Günther 2009). In this paper, we provide a re-assessment of the widely distributed and phenotypically variable species, the ashy kukri snake *Oligodon cinereus* (Günther, 1864), focusing on southern Indochinese populations (herein defined as Cambodia, Laos, and southern Vietnam).

O. cinereus exhibits a wide distribution including northern and eastern India, Bhutan, Myanmar (Burma), southern China (including Hong Kong), Vietnam, Laos, Cambodia, before ending in Thailand and possibly Malaysia (Green 2010; Uetz et al. 2022). The species was first described based on an adult male specimen collected from "Gamboja" (= Cambodia), which displays a dorsal color pattern that is uniform brown and gray (Günther 1864). Since its description, additional names have been allocated to this species, and O. cinereus is currently considered to be a morphologically variable snake with several different color patterns known across its range. Some of these have been recognized as distinct subspecies, whereas others are currently considered junior synonyms (Smith 1943; Wagner 1975; Green 2010; David et al. 2011). Within southern Indochina, O. cinereus is thought to have two different color patterns. The first has

Figure 1. Members of *Oligodon cinereus* sensu stricto showing live coloration, labelled according to their OTUs. A *Oligodon cinereus cinereus*, CBC 02891, adult male from Kirirom National Park, Kreang, Kampong Speu Province, Cambodia; B *Oligodon cattienensis*, CBC 02954, adult male from Prey Lang Wildlife Sanctuary, Stung Treng Province, Cambodia; C *Oligodon cinereus pallidocinctus*, ZMMU Re-13586, adult male from Loc Bao, Lam Dong Province, Vietnam; and D *Oligodon cattienensis*, ZFMK 88921, subadult paratype of *Oligodon cattienensis* from Nam Cat Tien National Park, Dong Nai Province, Vietnam. Photos by Neang Thy (A–B), Eduard A. Galoyan (C), and Peter Geissler (D).

been recognized as nominotypical O. cinereus, which all bear a uniform brown or gray dorsum with small darker reticulated markings across the body (Fig. 1A). Specimens with this pattern are known throughout Cambodia (Günther 1864; Saint Girons 1972), and outside of southern Indochina in Myanmar, Thailand, central/north Laos, and northern Vietnam (Smith 1943; Taylor 1965; Deuve 1970; David et al. 2011). The second was described as Simotes violaceus pallidocinctus Bourret, 1934 and is occasionally recognized as a subspecies by some authors (Taylor 1965; David et al. 2022). For the sake of consistency, we shall use the subspecific combinations of both color patterns herein. Specimens referable to Oligodon cinereus pallidocinctus bear a color pattern with narrow white crossbars and dark brown/black edges across the dorsum (Fig. 1C). This name was first described from "Cochinchine" (= southern Vietnam) and appears to be restricted to southern Indochina, although specimens resembling this color pattern have also been found in Myanmar (Lee et al. unpublished data).

Additionally, the recently described Cat Tien kukri snake Oligodon cattienensis Vassilieva et al., 2013 was previously confused with O. cinereus. This taxon was first discovered in Cat Tien National Park, Dong Nai Province, Vietnam and was originally identified as Oligodon cf. cinereus based on similar scalation traits (Geissler et al. 2011) (Fig. 1B, D). After more specimens were collected from the same area, Vassilieva et al. (2013) determined that they represented a distinct species and described them as O. cattienensis. Based on hemipenial morphology, Vassilieva et al. (2013) placed O. cattienensis in the O. cyclurus species group due to the organ being "forked... lacking spines or papillae", whereas O. cinereus and other members of the O. cinereus species group have unforked hemipenes with large "papillae"-like appendages visible on the organ when retracted in-situ. When directly compared to O. cinereus, the authors stated that O. cattienensis differs from this species by having "an entire nasal, by a head bearing prominent dark markings [temporal bars, chevron, interocular bar], and a red ventral coloration in juveniles [white to yellowish cream in O. cinereus]." Vassilieva et al. (2013) also compared O. cattienensis with specimens matching the color pattern of the subspecies O. cinereus pallidocinctus, which co-occurs in Cat Tien National Park. Although the differences in color pattern between O. cattienensis appear to be significant from adjacent populations of O. cinereus, Vassilieva et al. (2013) mostly relied on literature descriptions to obtain morphological data from other Oligodon and did not directly compare their new species with specimens of O. cinereus collected from areas outside of Cat Tien National Park. Furthermore, Vassilieva et al. (2013) did not perform molecular analyses on their new species, which could have clarified the status of the two sympatric Oligodon morphotypes co-occurring in the national park and adjacent regions.

Since 2013, we have discovered additional kukri snake specimens resembling the color patterns of *O. cattienensis*, *O. cinereus cinereus*, and *O. cinereus pallidocinctus* from southern Vietnam and adjacent Cambodia. Some of these specimens were discovered during recent field expeditions or were collected and deposited in natural history collections many years before the description of *O. cattienensis* was published. To shed light on the taxonomic status of these specimens, we carefully compared their morphology with the name-bearing types of *O. cattienensis*, *O. cinereus cinereus*, and *O. cinereus pallidocinctus*. We also sequenced mitochondrial DNA from recently collected specimens to determine their phylogenetic position amongst other members of the *O. cinereus* species group and the *O. cyclurus* species group. Our results recover substantial genetic and morphological over-

lap between O. cattienensis, O. cinereus cinereus, and O. cinereus pallidocinctus, suggesting that all three taxa are conspecific with one another. Consequently, we consider O. cattienensis and O. cinereus pallidocinctus to represent junior synonyms of O. cinereus herein.

Methods

Sampling and species delimitation

We examined preserved specimens of O. cattienensis and O. cinereus from natural history collections and sampled corresponding tissue samples for genomic DNA when available. For molecular analyses, we sequenced mitochondrial DNA from seven specimens resembling the color pattern of O. cattienensis (including the holotype), one specimen resembling the color pattern of topotypic O. cinereus cinereus, and six specimens of O. cinereus pallidocinctus preserved in different natural history collections (Appendix 1). In addition, we acquired two samples morphologically identified as Oligodon joynsoni (Smith, 1917) and Oligodon inornatus Boulenger, 1914, and 35 sequences of other Oligodon available on Gen-Bank (see Table 1 for sources of each sequence). Geographic locations of the examined populations are shown in Fig. 2. We were not able to examine all GenBank samples of Oligodon for morphological data but re-identified one sample labeled as O. cinereus (HM591504, specimen voucher ROM 37092) reported by Green et al. (2010). These authors briefly described this specimen in their paper, and based on this information plus the collection locality, we are confident that this specimen matches the color pattern found in O. cinereus pallidocinctus and allocate the sample and specimen to this taxon. The phylogenetic position of Oligodon amongst other colubrid genera is poorly known (Green et al. 2010; Figueroa et al. 2016). We therefore chose one sequence each of Oreocryptophis porphyraceus (Cantor, 1839) (subfamily Colubrinae) and Hebius vibakari (Boie, 1826) (subfamily Natricinae) as outgroups because of their use in previous phylogenies (Nguyen et al. 2020).

We examined the morphology of 37 specimens of *O. cattienensis* and *O. cinereus* preserved in natural history collections (Appendix 1). We separated specimens into three different Operational Taxonomic Units (OTUs)

Sample IDGenklank Accession No.Species/OTUCountryZMMU Re.13815 0 P732578, 07725393 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13866 0 P732590, 07725956 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13866 0 P732580, 07725956 0 <i>Pligodon catificanesis</i> VietnamERC0358 0 P732581, 07725366 0 <i>Pligodon catificanesis</i> VietnamERC120209 0 P732581, 07725064 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13445 0 P732580, 07725064 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.1346 0 P773596 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13271 0 P7732591, 07725064 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13271 0 P7732591, 07725064 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.13271 0 P7732591, 07725064 0 <i>Pligodon catificanesis</i> VietnamDir Volta 0 P1732591, 07725064 0 <i>Pligodon catificanesis</i> VietnamZMMU Re.12019 0 P7732581, 07725605 0 <i>Pligodon cateresis pallidocincus</i> VietnamDTU 500 (-BT 20193) 0 P7732581, 07725605 0 <i>Pligodon cateresis pallidocincus</i> VietnamROMU Re.16480 0 P7732581, 07725605 0 <i>Pligodon cateresis pallidocincus</i> 0 <i>Plintanicas</i> DTU 500 (-BT 20193) 0 P175061 0 <i>Pligodon cateresis pallidocincus</i> 0 <i>Plintanicas</i> DTU 500 (-BT 20193) 0 P7725861, 07725602 0 <i>Pligodon cateresis pallidocincus</i> 0 <i>Plintanicas</i> DTU 500 (-BT 20102) 0 P772581,	ŀ						
ZMMU Re-13815 $0732578, 07723594$ $01godin cattierensisVietnamZMMU Re-138660772578, 0772359401godin cattierensisVietnamZMMU Re-138650772583, 0772359401godin cattierensisVietnamZMMU Re-138650772583, 077259401godin cattierensisVietnamFMN12621900772583, 077259401godin catterensisVietnamZMMU Re-134430772583, 077259401godin catterensisVietnamZMMU Re-134430772583, 077259401godin catterensisVietnamZMMU Re-13430772583, 077259401godin catterensisVietnamZMMU Re-135860772594, 077259401godin catterensisVietnamZMMU Re-135860772594, 077259401godin catterensisVietnamZMMU Re-132710772584, 077259401godin catterensisVietnamZMU Re-132710772584, 0772564701godin catterensisVietnamZMU Re-132710772584, 0772584, 077258401godin catterensisVietnamZMU Re-132710772584, 0772584, 077258401godin catterensisVietnamZMU Re-132710772584, 0772584, 0772584$	No.	Sample ID	GenBank Accession No.	Species/OTU	Country	Locality	Reference
ZMMU Re-1366OP73259, OP732594Oligodon cartienensisVetaamZMMU Re-1365OP73258, OP732595Oligodon cartienensisVetaamZMMU Re-1365OP73258, OP732595Oligodon cartienensisVetaamERC02959OP73558, OP732596Oligodon cartienensisVetaamEMMU Re-13443OP73258, OP732605Oligodon cartienensisVetaamZMMU Re-13443OP732590, OP732605Oligodon carteensisVetaamZMMU Re-13445OP732590, OP732605Oligodon carteensisVetaamZMMU Re-13586OP732590, OP732605Oligodon carteensisVetaamZMMU Re-13586OP732590, OP732605Oligodon carteensisVetaamZMMU Re-13546OP732590, OP732605Oligodon carteensisVetaamZMMU Re-13586OP732580, OP732605Oligodon carteensisVetaamZMMU Re-13571OP732580, OP732605Oligodon carteensisVetaamZMMU Re-13546OP732580, OP732605Oligodon carteensisVetaamZMMU Re-13570OP732580, OP732605Oligodon carteensisVetaamDT 500(-ETJ0193)OP732580, OP732605Oligodon carteensisVetaam <t< td=""><td>1</td><td>ZMMU Re-13815</td><td>OP752578, OP752593</td><td>Oligodon cattienensis</td><td>Vietnam</td><td>Dong Nai Prov., Cat Tien NP</td><td>this work</td></t<>	1	ZMMU Re-13815	OP752578, OP752593	Oligodon cattienensis	Vietnam	Dong Nai Prov., Cat Tien NP	this work
ZMMU Re-13665OP732580, OP7325905Oligodon cattienensisVienamC E002958OP732581, OP732595Oligodon cattienensisVienamS EEZC20209OP732581, OP732595Oligodon cattienensisVienamF ENNIPAG2190OP732583, OP732695Oligodon cattienensisVienamZ MMU Re-13443OP732583, OP732695Oligodon cattienensisVienamZ MMU Re-13443OP732583, OP732605Oligodon cattienensisVienamZ MMU Re-13445OP732583, OP732605Oligodon catterens pallidocinctusVienamZ MMU Re-13271OP732583, OP732605Oligodon catterens pallidocinctusVienamZ MMU Re-13271OP732583, OP732605Oligodon catterens pallidocinctusVienamZ MMU Re-13271OP732583, OP732605Oligodon catterens pallidocinctusVienamZ MMU Re-14800OP732583, OP732605Oligodon catterens pallidocinctusVienamZ ED0193)OP732583, OP732605Oligodon catterens pallidocinctusVienamD 10 500 (=BT20193)OP732583, OP732605Oligodon catterens pallidocinctusVienamZ MMU Re-164800OP732583, OP732605Oligodon catterens pallidocinctusVienamD 200 (=BT20193)OP732583, OP732605Oligodon catterens pallidocinctusVienamD 200 (=BT201		ZMMU Re-13866	OP752579, OP752594	Oligodon cattienensis	Vietnam	Dong Nai Prov., Cat Tien NP	this work
CBC02958OP732581, OP732595Oligodon cutitenensisCumboliaSIEZC20209OP732582, OP732597Oligodon cutitenensisViennamFMNH26190OP732583, OP732694Oligodon cutitenensisViennamZMMU Re-13443OP732580, OP732604Oligodon cutitenensisViennamZMMU Re-13446OP732580, OP732605Oligodon cutitenensisViennamZMMU Re-13445OP732590, OP732605Oligodon cutitenensisViennamZMMU Re-1371OP732590, OP732605Oligodon cutereus pollidocinctusViennamZMMU Re-1371OP732590, OP732605Oligodon cutereus pollidocinctusViennamZMMU Re-1371OP732580, OP732605Oligodon cutereus pollidocinctusViennamZMU Re-1371OP732580, OP732605Oligodon cutereus pollidocinctusViennamZMU Re-1371OP732580, OP732605Oligodon cutereus pollidocinctusViennamZMU Re-1371OP732580, OP732605Oligodon cutereus spalladocinctusViennamZMU Re-1480OP732580, OP732605Oligodon cutereus spalladocinctusViennamD10001701OP732580, OP732605Oligodon cutereus scallaboViennamZMUV Re-16480OP732580, OP732605Oligodon cutereus scallaboViennamZMU Re-16480OP732580, OP732605Oligodon cutereus scallaboViennamZMU Re-16480OP732580, OP732605Oligodon cutereus scallaboViennamZMU Re-16480OP732580, OP732605Oligodon cutereus scallaboViennamZMU Re-16480OP732580, OP73260Oligodon cutereus scallaboV		ZMMU Re-13865	OP752580, OP752595	Oligodon cattienensis	Vietnam	Dong Nai Prov., Cat Tien NP	this work
SIEZC20209OPT2558, OPT52597Oligodon cattienensisVietnamFMNH26190OP72558, OP752604Oligodon cattienensisVietnamZMMU Re-13443OP72559, OP752604Oligodon cattienensisVietnamZMMU Re-13446OP75259, OP752605Oligodon cinerus pallidocinctusVietnamZMMU Re-1371OP75259, OP752605Oligodon cinerus pallidocinctusVietnamZMMU Re-1371OP75259, OP752605Oligodon cinerus pallidocinctusVietnamZMU Re-1371OP75259, OP752605Oligodon cinerus pallidocinctusVietnamZMU Re-1371OP75259, OP752605Oligodon cinerus pallidocinctusVietnamZMU Re-1371OP75258, OP752605Oligodon cinerus pallidocinctusVietnamDIU 500 (EBT20193)OP75258, OP752602Oligodon cinerus pallidocinctusVietnamDIU 600 2028OP75286, OP752602Oligodon cinerus pallidocinctusVietnamDIU 700 (EBT20193)OP75288, OP752602Oligodon cinerus pallidocinctusVietnamDIU 800 (EBT20193)OP75288, OP752602Oligodon cinerus sensa latioVietnamDIU 800 2028HM59150Oligodon cinerus sensa latioVietnamROM37062HM59150Oligodon cinerus sensa latioVietnamROM32061HM59150Oligodon cinerus sensa latioVietnamROM32062HM59150Oligodon cinerus sensa latioVietnamROM32062HM59150Oligodon cinerus sensa latioVietnamROM32063HM59150Oligodon cinerus sensa latioVietnamROM32050HM5		CBC02958	OP752581, OP752596	Oligodon cattienensis	Cambodia	Stung Treng Prov., Spong village	this work
FMNH2.62190OP75258, OP75268OP/gadom catteenensisVictuanZMMU Re-13443OP75259, OP752604Oligadom cinereus pallidocincusVictuanZMMU Re-13445OP75259, OP752605Oligadom cinereus pallidocincusVictuanZMMU Re-1371OP75259, OP752605Oligadom cinereus pallidocincusVictuanZMMU Re-1371OP75259, OP752605Oligadom cinereus pallidocincusVictuanZMMU Re-1371OP75259, OP752605Oligadom cinereus pallidocincusVictuanZMMU Re-1371OP75258, OP752607Oligadom cinereus pallidocincusVictuanDTU 500(-BT.2019.3)OP75258, OP752602Oligadom cinereus cinereusVictuanDTU 500(-BT.2019.3)OP75258, OP752602Oligadom cinereus cinereusVictuanD		SIEZC20209	OP752582, OP752597	Oligodon cattienensis	Vietnam	Dak Lak Prov., Yok Don NP	this work
ZMMU Re-13443OP752560, OP725604Oigodon cinereus palitálocinciusVietnamZMMU Re-1346OP75290, OP725605Oigodon cinereus palitálocinciusVietnamZMMU Re-1371OP75290, OP752607Oigodon cinereus palitálocinciusVietnamZMMU Re-1371OP75259, OP752607Oigodon cinereus palitálocinciusVietnamZMMU Re-1371OP752580, OP752607Oigodon cinereus palitálocinciusVietnamFMN1259201OP752580, OP752607Oigodon cinereus palitálocinciusCambodiaDTU 500 (=BT2019.3)OP752580, OP752607Oigodon cinereus palitálocinciusCambodiaDTU 500 (=BT2019.3)OP752580, OP752602Oigodon cinereus palitálocinciusVietnamDE 2001701OP752581MUOigodon cinereus sensu latoVietnamDE 200252HM51		FMNH262190	OP752583, OP752598	Oligodon cattienensis	Vietnam	Dong Nai Prov., Cat Tien NP	this work
ZMMU Re-13946OP75290, OP752005Oligodon cinereus pallidocinctusVietnamZMMU Re-1371OP75291, OP752607Oligodon cinereus pallidocinctusVietnamZMMU Re-1371OP752592, OP752607Oligodon cinereus sollidocinctusVietnamFNNH259201OP752584, OP752607Oligodon cinereus sollidocinctusCambodiaFNNH259201OP752584, OP752607Oligodon cinereus sollidocinctusCambodiaDTU 500 (=BT2019.3)OP752585, OP752602Oligodon cinereus sollidocinctusCambodiaDTU 500 (=BT2019.3)OP752587, OP752602Oligodon cinereus sollidocinctusVietnamDTU 500 (=BT2019.3)OP752680Oligodon cinereus sollidocinctusVietnamDTU 500 (=BT2019.3)OP752587, OP752602Oligodon cinereus sollidocinctusVietnamDTU 500 (=BT2019.2)Oligodon cinereus sollidocinctusVietnamVietnamDTU 500 (EBT2019.2)Oligodon cinereus sollidocinctusVietnamVietnamDT 500 (EBT2019.2)Oligodon cinereus sollidocinctusVietnamVietnamDT 500 (EBT2019.2)DIgodon cinereus sollidoci		ZMMU Re-13443	OP752589, OP752604	Oligodon cinereus pallidocinctus	Vietnam	Binh Phuok Prov., Bu Gia Map NP	this work
ZMMU Re-13566Oligodon cinereus palitVietnamZMMU Re-13271OP752591, OP752607Oligodon cantienensisVietnamFMNH259201OP752584, OP752607Oligodon cinereus palitVietnamFMNH259201OP752584, OP752607Oligodon cinereus palitCambodiaDTU 500 (=BT.2019.3)OP752586, OP725601Oligodon cinereus palitCambodiaDTU 500 (=BT.2019.3)OP752586, OP725602Oligodon cinereus palitVietnamDTU 500 (=BT.2019.3)DP752586, OP725602Oligodon cinereus sensu latoVietnamDT 5025028HM591507Oligodon cinereus sensu latoVietnamDT 5025028HM591507Oligodon cinereus sensu latoVietnamDT 5025029HM591509Oligodon cinereus sensu latoVietnamDT 5025029HM591509Oligodon cinereus sensu latoVietnamDT 502502HM591509Oligodon cinereus sensu latoVietnamDT 502502HM591509Oligodon cinereus sensu latoVietnamDT 502502HM591509Oligodon cinereus sensu latoVietnamDT 502502HM591509Oligodon ci		ZMMU Re-13946	OP752590, OP752605	Oligodon cinereus pallidocinctus	Vietnam	Lam Dong Prov., Loc Bao	this work
ZMMU Re-13271OP3559, OP752607Oligodon cattienensisVietnamFMNH25901OP75258, OP752601Oligodon cinereus pallidocinctusCambodiaDE002891OP72586, OP752601Oligodon cinereus cinereusCambodiaDTU 500(=BT2019.3)OP752586, OP752601Oligodon cinereus pallidocinctusVietnamDTU 500(=BT2019.3)OP752586, OP752602Oligodon cinereus pallidocinctusVietnamDE001701OP72586, OP752603Oligodon cinereus pallidocinctusVietnamDTU 500(=BT2019.3)OP72588, OP752603Oligodon cinereus pallidocinctusVietnamDE001701OP72586, OP752603Oligodon cinereus pallidocinctusVietnamDE00170252HM591507Oligodon cinereus sensu latoVietnamDE002552HM591507Oligodon cinereus sensu latoVietnamDE002552HM591503Oligodon cinereus sensu latoVietnamDE012552HM591503Oligodon cinereus sensu latoVietnamDE012552HM591503Oligodon cinereus sensu latoVietna		ZMMU Re-13586	OP752591, OP752606	Oligodon cinereus pallidocinctus	Vietnam	Dong Nai Prov., Cat Tien NP	this work
FMNH25901OP32584, OP752690Oligodon cinereus pallidocinctusCambodiaCBC02891OP725856, OP752601Oligodon cinereus cinereusCambodiaDTU 500 ($=$ BT.2019.3)OP725856, OP752602Oligodon cinereus pallidocinctusCambodiaDE001701OP725856, OP752602Oligodon cinereus pallidocinctusCambodiaCBC01701OP752856, OP752602Oligodon cinereus pallidocinctusCambodiaDAMU Re-16480OP752858, OP752602Oligodon cinereus pallidocinctusCambodiaCBC01701OP752858, OP752602Oligodon cinereus pallidocinctusCambodiaCBC0170252HM591507Oligodon cinereus sensu latoVietnamROM32462HM591502Oligodon cinereus sensu latoVietnamROM32462HM591503Oligodon cinereus sensu latoVietnamROM33666HM591503Oligodon cinereus sensu latoVietnamROM32666HM591503Oligodon cinereus sensu latoVietnam </td <td></td> <td>ZMMU Re-13271</td> <td>OP752592, OP752607</td> <td>Oligodon cattienensis</td> <td>Vietnam</td> <td>Lam Dong Prov., Bidoup–Nui Ba NP</td> <td>this work</td>		ZMMU Re-13271	OP752592, OP752607	Oligodon cattienensis	Vietnam	Lam Dong Prov., Bidoup–Nui Ba NP	this work
CBC02891OP752585, OP752601Oligodon cinereusCambodiaDTU 500(\pm BT.2019.3)OP752586, OP752601Oligodon cinereusVienamDTU 500(\pm BT.2019.3)OP752585, OP752603Oligodon cinereusVienamCBC01701OP752585, OP752603Oligodon cinereusVienamDAMU Re-16480OP752585, OP752603Oligodon cinereusVienamCMMU Re-16480OP752585, OP752603Oligodon cinereusVienamROM37922HM591507Oligodon cinereus pallidocinctusVienamROM37022HM591507Oligodon cinereus sensu latoVienamROM37625HM591503Oligodon cinereus sensu latoVienamROM30699HM591503Oligodon cinereus sensu latoVienamROM30691HM591503Oligodon cinereus sensu latoVienamROM30692HM591503Oligodon cinereus sensu latoVienamROM35629HM591519Oligodon cinereus sensu latoVienam <t< td=""><td></td><td>FMNH259201</td><td>OP752584, OP752599</td><td>Oligodon cinereus pallidocinctus</td><td>Cambodia</td><td>Mondolkiri Prov., Pichrada Dist.</td><td>this work</td></t<>		FMNH259201	OP752584, OP752599	Oligodon cinereus pallidocinctus	Cambodia	Mondolkiri Prov., Pichrada Dist.	this work
DTU 500 (=BT.2019.3)OP75258, OP752601Oligodon cinereus pallidocinctusVietnamI CBC01701OP75258, OP752602Oligodon inornatusCambodiaI ZMMU Re-16480OP75258, OP752603Oligodon inornatusCambodiaI ZMMU Re-16480OP75258, OP752603Oligodon cinereus pallidocinctusYietnamI ZMMU Re-16480OP75258, OP752603Oligodon cinereus pallidocinctusYietnamI ZMMU Re-16480OP75258, OP752603Oligodon cinereus sensu latoYietnamI ROM37092HM591507Oligodon cinereus sensu latoYietnamI ROM3069HM591502Oligodon cinereus sensu latoYietnamI ROM3069HM591502Oligodon cinereus sensu latoYietnamI ROM3069HM591502Oligodon cinereus sensu latoYietnamI ROM3069HM591503Oligodon cinereus sensu latoYietnamI ROM3069HM591503Oligodon cinereus sensu latoYietnamI ROM3069HM591503Oligodon cinereus sensu latoYietnamI ROM3069HM591504Oligodon cinereus sensu latoYietnamI ROM3069HM591504Oligodon cinereus sensu latoYietnamI ROM3069HM591504Oligodon cinereus sensu latoYietnamI ROM3069HM59153Oligodon cinereus sensu latoYietnamI ROM3069HM59153Oligodon cinereus sensu latoYietnamI ROM3060HM59153Oligodon cinereus sensu latoYietnamI ROM3060HM59153Oligodon cinereus sensu latoYietnamI ROM326		CBC02891	OP752585	Oligodon cinereus cinereus	Cambodia	Kampong Speu Prov., Kirirom NP	this work
CBC01701 $CBTC01701$ $CP752587$, $OP752602$ $Oligodon inormatusCambodiaZMMU Re-16480CP752588, OP752603Oligodon inormatusTailandoROM37092HM591507Oligodon cinereus pallidocinctusVietnamoROM37092HM591507Oligodon cinereus sensu latoVietnamoROM37092HM591507Oligodon cinereus sensu latoVietnamoROM37092HM591507Oligodon cinereus sensu latoVietnamoROM39699HM591502Oligodon cinereus sensu latoVietnamoROM32619HM5915102Oligodon cinereus sensu latoVietnamoROM32629HM591532Oligodon cinereus sensu latoVietnamoROM32619HM591532Oligodon cinereus sensu latoVietnamoROM32649HM591533Oligodon cinereus sensu latoVietnamoROM32649HM591523Oligodon cinereus sensu latoVietnamoROM32649HM591523Oligodon cinereus sensu latoVietnamoROM32649HM591523Oligodon cinereus sensu latoVietnamoROM32649HM591523$		DTU 500 (=BT.2019.3)	OP752586, OP752601	Oligodon cinereus pallidocinctus	Vietnam	Binh Thuan Prov., Phan Thiet, Ma Lam	this work
ZMMU Re-16480OP75268\$, OP752603Oligodon joynsoniThailandROM37092HM591504HM591504Oligodon cinereus pallidocinctusVietnamROM37092HM591504Oligodon cinereus sensu latoVietnamROM32462HM591501Oligodon cinereus sensu latoVietnamROM32462HM591502Oligodon cinereus sensu latoVietnamROM30669HM591502Oligodon cinereus sensu latoVietnamROM30652HM591503Oligodon cinereus sensu latoVietnamROM30691HM591503Oligodon cinereus sensu latoVietnamROM30692HM591504Oligodon cinereus sensu latoVietnamROM35626HM591519Oligodon cinereus sensu latoVietnamROM35629HM591519Oligodon cinereus sensu latoVietnamROM35629HM591519Oligodon cinereus sensu latoVietnamROM35629HM591530Oligodon cinereus sensu latoVietnamROM35629HM591533Oligodon cinereus sensu latoVietnamROM32660HM591533Oligodon cinereus sensu latoVietnamROM32660HM591533Oligodon cinereus sensu latoVietnam		CBC01701	OP752587, OP752602	Oligodon inornatus	Cambodia	Pursat Prov., Samkos WS	this work
ROM37092HMS91504Oligodon cinereus pallidocinctusVietnamCAS205028HM591507 $Oligodon cinereus sensu latoNietnamROM32462HM591501Oligodon cinereus sensu latoNietnamROM32462HM591502Oligodon cinereus sensu latoVietnamROM32462HM591502Oligodon cinereus sensu latoVietnamROM3069HM591502Oligodon cinereus sensu latoVietnamROM3069HM591503Oligodon cinereus sensu latoVietnamROM3069HM591503Oligodon cinereus sensu latoNietnamROM30501HM591503Oligodon cinereus sensu latoNietnamROM35626HM591519Oligodon cinereus sensu latoNietnamROM35629HM591519Oligodon cinereus sensu latoNietnamROM35626HM59153Oligodon cinereus sensu latoNietnamROM35629HM59153Oligodon cinereus sensu latoNietnamROM35629HM59153Oligodon cinereus sensu latoNietnamROM35629HM59153Oligodon cinereus sensu latoNietnamROM3266HM59153Oligodon cinereus sensu latoNietnamROM3266HM59153Oligodon cinereus sensu latoNietnamROM3266HM591535Oligodon cinereus sensu latoNietnamROM3266HM591535Oligodon cinereus sensu latoNietnamROM3266HM591535Oligodon cinereus sensu latoNietnamROM3266HM591535Oligodon cinereus sensu latoNietnamROM$		ZMMU Re-16480	OP752588, OP752603	Oligodon joynsoni	Thailand	Chiang Rai Prov., Doi Tung	this work
CAS205028HM591507Oligodon cinereus sensu latoMyanmarROM32462HM591501Oligodon cinereus sensu latoVietnamROM32552HM591502Oligodon cinereus sensu latoVietnamROM29552HM591503Oligodon cinereus sensu latoVietnamROM29552HM591503Oligodon cinereus sensu latoVietnamROM3069HM591503Oligodon cinereus sensu latoVietnamROM30501HM591503Oligodon cinereus sensu latoVietnamROM35629HM591510Oligodon cinereus sensu latoVietnamROM35629HM591510Oligodon cinereus sensu latoVietnamROM35629HM591526Oligodon cinereus sensu latoVietnamROM35629HM591526Oligodon cinereus sensu latoVietnamROM32609HM591533Oligodon cinereus sensu latoVietnamROM32260HM591533Oligodon formosanusVietnamROM32260HM591521Oligodon taeniatusVietnamROM32260HM591533Oligodon taeniatusVietnamROM32464HM591533Oligodon taeniatusVietnamROM32464HM591533Oligodon taeniatusVietnamROM32464HM591533Oligodon cineratusVietnamROM32464HM591533Oligodon cineratusVietnamROM32464HM591533Oligodon cineratusVietnamROM32464HM591533Oligodon cineratusVietnamROM32464HM591533Oligodon cineratusVietnamROM32464 <td< td=""><td></td><td>ROM37092</td><td>HM591504</td><td>Oligodon cinereus pallidocinctus</td><td>Vietnam</td><td>Dong Nai Prov., Cat Tien NP</td><td>Green et al. (2010)</td></td<>		ROM37092	HM591504	Oligodon cinereus pallidocinctus	Vietnam	Dong Nai Prov., Cat Tien NP	Green et al. (2010)
ROM32462HM591501Oligodon cinereus sensu latoVietnamROM32452HM591502Oligodon cinereus sensu latoVietnamROM3069HM591503Oligodon cinereus sensu latoVietnamROM3069HM591503Oligodon cinereus sensu latoVietnamLOM32061HM591503Oligodon cinereus sensu latoVietnamROM3065HM591503Oligodon cinereus sensu latoNietnamROM35050HM591516Oligodon cinereus sensu latoNietnamROM35629HM591526Oligodon cinereus sensu latoNietnamROM35629HM591533Oligodon cinereus sensu latoNietnamROM35629HM591533Oligodon cinereus sensu latoVietnamROM32560HM591533Oligodon cinereusVietnamROM32260HM591523Oligodon neantausVietnamROM32260HM591533Oligodon neantausVietnamROM32260HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591533Oligodon neantausVietnamROM32660HM591535Oligodon neantausVietnamROM32660HM591535Oligodon neantaus<		CAS205028	HM591507	Oligodon cinereus sensu lato	Myanmar	Rakhine St., Rakhine Yoma Mts.	Green et al. (2010)
ROM29552HM591502Oligodon cinereus sensu latoVietnamROM30969HM591503Oligodon cinereus sensu latoVietnamROM30969HM591508Oligodon cinereus sensu latoNietnamUMM2201913HM591508Oligodon cinereus sensu latoMyanmarUMM2201913HM591519Oligodon cinereus sensu latoNietnamROM35629HM591526Oligodon cinereus sensu latoNietnamROM35629HM591535Oligodon cinereus sensu latoVietnamROM35629HM591533Oligodon cinereus sensu latoVietnamROM32261HM591533Oligodon cinereusVietnamROM32260HM591521Oligodon coellatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM32260HM591523Oligodon taeniatusVietnamROM3260HM591523Oligodon taeniatusVietnamROM3260HM591523Oligodon taeniatusVietnamROM3260HM591533Oligodon taeniatusVietnamROM3260HM591535Oligodon taeniatusVietnamROM3260HM591535Oligodon taeniatusVietnamROM3260HM591535Oligodon taeniatusVietnamROM3260HM591535Oligodon taeniatus		ROM32462	HM591501	Oligodon cinereus sensu lato	Vietnam	Hai Duong Prov., Chi Linh	Green et al. (2010)
ROM3066HM591503Oligodon cinereus sensu latoVietnamCAS215261HM591508Oligodon cinereus sensu latoMyanmarUMMZ201913HM591519Oligodon corolineatusBruneiNMMZ201913HM591526Oligodon corolineatusBruneiROM35629HM591535Oligodon chinensisVietnamROM35629HM591533Oligodon formosanusVietnamROM3261HM591534Oligodon formosanusVietnamROM32260HM591534Oligodon cellatusVietnamROM3260HM591523Oligodon taeniatusVietnamROM3260HM591533Oligodon taeniatusVietnamROM3260HM591533Oligod		ROM29552	HM591502	Oligodon cinereus sensu lato	Vietnam	Vinh Phuc Prov., Tam Dao NP	Green et al. (2010)
CAS215261HM591508Oligodon cinereus sensu latoMyanmarUMMZ201913HM591519Oligodon octolineatusBruneiUMMZ201913HM591526Oligodon octolineatusBruneiROM 35626HM591526Oligodon octolineatusVietnamROM 35629HM591533Oligodon octolineatusVietnamROM 35629HM591533Oligodon ocellatusVietnamROM 32261HM591521Oligodon ocellatusVietnamROM 32260HM591523Oligodon taeniatusVietnamROM 3264HM591533Oligodon taeniatusVietnamROM 3264HM591533Oligodon taeniatusVietnamROM 3264HM591533Oligodon taeniatusVietnamROM 3264HM591533Oligodon taeniatusVietnamROM 3264HM591535Oligodon taeniatusVietnamROM 3264HM591535Oligodon taeniatusVietnamROM 3264HM591535Oligodon taeniatusVietnamROM 3264HM591535Oligodon taeniatusVietnamROM 3264HM591535Oligodon taeniatusVietnamROM 3264HM591535Oligodon tarvolutusVietnamROM 3264HM591535Oligodon tarvolutusVietnamROM 3264HM591535Oligodon tarvolutusVietnamROM 3264HM591535Oligodon tarvolutusVietnamROM 3264HM591535Oligodon tarvolutusVietnamROM 3266HM591535Oligodon tarvolutusVietnamROM 3266 <t< td=""><td></td><td>ROM30969</td><td>HM591503</td><td>Oligodon cinereus sensu lato</td><td>Vietnam</td><td>Nghe An Prov., Pu Mat NP</td><td>Green et al. (2010)</td></t<>		ROM30969	HM591503	Oligodon cinereus sensu lato	Vietnam	Nghe An Prov., Pu Mat NP	Green et al. (2010)
UMMZ201913 HM591519 Oligodon octolineatus Brunei ROM 35626 HM591526 Oligodon chinensis Vietnam ROM 35629 HM591533 Oligodon chinensis Vietnam ROM 35629 HM591533 Oligodon formosanus Vietnam ROM 3261 HM591534 Oligodon ocellatus Vietnam ROM 32261 HM591534 Oligodon ocellatus Vietnam ROM 32260 HM591521 Oligodon taeniatus Vietnam ROM 32464 HM591523 Oligodon barroni Vietnam CAS20463 HM591535 Oligodon cyclurus Manmar		CAS215261	HM591508	Oligodon cinereus sensu lato	Myanmar	Shan St., Kalaw	Green et al. (2010)
ROM 35626HM591526Oligodon chinensisVietnamROM 35629HM591533Oligodon formosanusVietnamROM 32261HM591534Oligodon ocellatusVietnamROM 32260HM591521Oligodon areniatusVietnamROM 32464HM591523Oligodon taeniatusVietnamROM 32464HM591533Oligodon barroniVietnamCAS20463HM591535Oligodon cyclurusManmar		UMMZ201913	HM591519	Oligodon octolineatus	Brunei	Tutong Dist., 3 km E of Tutong	Green et al. (2010)
ROM35629HM591533Oligodon formosanusVietnamROM32261HM591534Oligodon ocellatusVietnamROM32260HM591521Oligodon taeniatusVietnamROM32464HM591523Oligodon barroniVietnamCAS20463HM591535Oligodon cyclurusMannar		ROM 35626	HM591526	Oligodon chinensis	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
ROM32261HM591534Oligodon ocellatusVietnamROM32260HM591521Oligodon taeniatusVietnamROM32464HM591523Oligodon barroniVietnamCAS204963HM591535Oligodon cyclurusManmar		ROM35629	HM591533	Oligodon formosanus	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
ROM32260 HM591521 Oligodon taeniatus Vietnam ROM32464 HM591523 Oligodon barroni Vietnam CAS20463 HM591535 Oligodon cyclurus Wannar		ROM32261	HM591534	Oligodon ocellatus	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
ROM32464 HM591523 Oligodon barroni Vietnam CAS204963 HM591535 Oligodon cyclurus Myanmar		ROM32260	HM591521	Oligodon taeniatus	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
CAS204963 HM591535 Oligodon cyclurus Myanmar		ROM32464	HM591523	Oligodon barroni	Vietnam	Gia Lai Prov., Krong Pa	Green et al. (2010)
		CAS204963	HM591535	Oligodon cyclurus	Myanmar	Ayeyarwady Div., Mwe Hauk	Green et al. (2010)

Table 1. List of sequences and corresponding voucher specimens of *Oligodom* and outgroup taxa used in this study. Note that the numbers (column one) included in this table do not match the numbers used in Amendia 1 and Fig. 2. Acronoms not described in the materials and methods include the following: CHS, unknown field tag series: RAP field tags of R. Alexander Pyron: RS, field tags of Ruchina

				ç		
.01			apercevor	Country	госанцу	
29	CAS204855	HM591509	Oligodon splendidus	Myanmar	Mandalay Div., Kyauk Se	Green et al. (2010)
30	CAS215976	HM591513	Oligodon torquatus	Myanmar	Mandalay Div., Min Gone Taung WS	Green et al. (2010)
31	CAS213822	HM591514	Oligodon planiceps	Myanmar	Magwe Div., Shwe Set Taw WS	Green et al. (2010)
32	CAS213896	HM591516	Oligodon theobaldi	Myanmar	Magwe Div., Shwe Set Taw WS	Green et al. (2010)
33	CAS213271	HM591517	Oligodon cruentatus	Myanmar	Yangon Div., Hlaw Ga NP	Green et al. (2010)
34	ROM27049	HM591518	Oligodon eberhardti	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
35	TNHC59846	HM591511	Oligodon maculatus	Philippines	Mindanao, Barangay Baracatan	Green et al. (2010)
36	SIEZC 20201	MN395604; MN396765	Oligodon vostralis	Vietnam	Lam Dong Prov., Bidoup – Nui Ba NP	Nguyen et al. (2020)
37	ZMMU Re-14304	MN395601; MN396762	Oligodon annamensis	Vietnam	Dak Lak Prov., Chu Yang Sin NP	Nguyen et al. (2020)
38	RS-OC	KC347328; KC347366	Oligodon calamarius	Sri Lanka	Kandy Dist.	Pyron et al. (2013)
39	RAP 504	KC347329; KC347367	Oligodon sublineatus	Sri Lanka	Kandy Dist.	Pyron et al. (2013)
40	RAP 483	KC347327; KC347365	Oligodon arnensis	Sri Lanka	Hambantota Dist.	Pyron et al. (2013)
41	RS 136	KC347330; KC347368	Oligodon taeniolatus	Sri Lanka	Polonnaruwa Dist.	Pyron et al. (2013)
42	NCBS NRC-AA-019	MZ675817	Oligodon churahensis	India	Himachal Pradesh Prov., Chamba distr.	Mirza et al. (2021)
43	KIZ014591	MW090140; MW133297	Oligodon nagao	China	Guangxi, Longzhou County, Nonggang National NR	Xu et al. (2021)
44	KIZ011002	MW090139; MW133296	Oligodon lipipengi	China	Tibet, Medok	Che et al. (2020)
45	CHS190	MK193970; MK201321; MK065403	Oligodon cf. nagao	China	Hainan Isl.	Li et al. (2020)
46	CHS850	MK194265; MK201568; MK065694	Oligodon albocinctus	China	Yunnan Prov., Gongshan	Li et al. (2020)
47	CHS668	MK194135; MK201461; MK065563	Oligodon fasciolatus	China	Yunnan Prov.	Li et al. (2020)
48	CHS304	MK194038; MK201386; MK065470	Oligodon lacroixi	China	Jiangxi Prov., Jinggangshan	Li et al. (2020)
49	CHS683	MK194147; MK065575	Oligodon ornatus	China	1	Li et al. (2020)
50	SYNU 1907027	MW489824	Oligodon bivirgatus	China	Hainan, Shangxi NR	Qian et al. (2021)
Outgroups	sdno.					
51		KP684155	Hebius vibakari			
52		GQ181130	Oreocryptophis porphyraceus			

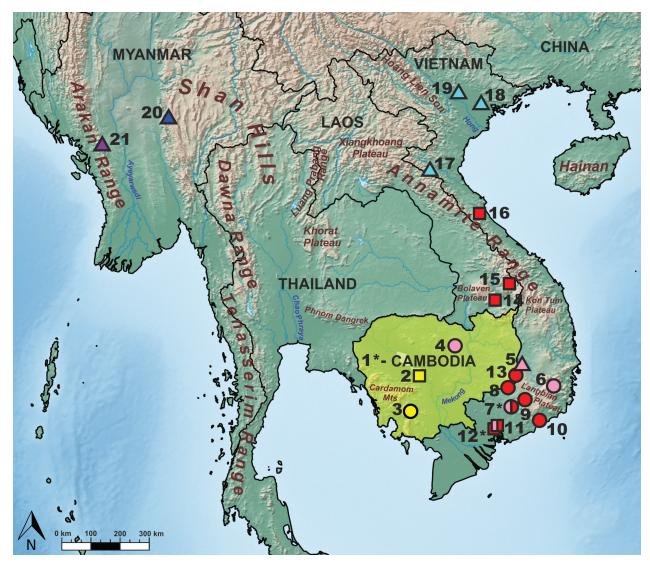


Figure 2. Known distribution of topotypic Oligodon cinereus cinereus (yellow), Oligodon cattienensis (pink), Oligodon cinereus pallidocinctus (red) and other lineages of Oligodon cinereus sensu lato (see color matching in Fig. 3) in Indochina. Triangle icons denote specimens with only molecular data; square icons denote specimens with only morphological data; and round icons denote specimens with both molecular and morphological data. Stars/asterisks next to numbers indicate type localities. Localities: 1 Cambodia (without further specification, type locality of Oligodon cinereus); 2 Trapeang Chan, Kampong Chhnang Prov., Cambodia; 3 Kirirom NP, Kreang, Kampong Speu Prov., Cambodia; 4 Prey Lang WS, Stung Treng Prov., Cambodia; 5 Yok Don NP, Dak Lak Prov., Vietnam; 6 Bidoup – Nui Ba NP, Lam Dong Prov., Vietnam; 7 Cat Tien NP, Dong Nai Prov., Vietnam; (type locality of Oligodon cattienensis); 8 Bu Gia Map NP, Binh Phuoc Prov., Vietnam; 9 Loc Bao forest, Lam Dong Prov., Vietnam; 10 Ma Lam Phan Thiet, Binh Thuan Prov., Vietnam; 11 Bien Hoa, Dong Nai Prov., Cambodia; 14 Attapu, Attapu Province, Laos; 15 Dak Cheung, Sekong Prov., Laos; 16 Phong Nha – Ke Bang NP, Quang Binh Prov., Vietnam; 17 24 km W of Con Cuong, Nghe An Prov., Vietnam; 18 Chi Linh, Hai Duong, Vietnam; 19 Tam Dao NP, Vinh Phuc Prov., Vietnam; 20 Arakan Range (formerly 'Rakhine Yoma Mountain Range'), Rakhine State, Myanmar; 21 Kalaw township, Shan State, Myanmar.

a priori and classified specimens based on type status, matching color pattern descriptions, and geographic distribution. The OTUs include: 1) *Oligodon cattienensis* (n=11), including the type series, topotypic material and referred specimens bearing large dark-edged blotches and red ventral coloration in juveniles; 2) nominotypical *Oligodon cinereus cinereus* (n=7), including topotypic specimens found within Cambodia bearing a uniform or slightly reticulated dorsum; and 3) specimens referrable to the subspecies *Oligodon cinereus pallidocinctus* (n=19), which bear white crossbars with black or dark-

brown edges across the dorsum (Tables 1, 5). We note that in our conclusion, we consider all three of these taxa as synonyms of *O. cinereus* sensu stricto by the end of this paper but continue to use their subspecific names throughout the text. Furthermore, because our focus was to compare southern Indochinese populations of *O. cinereus* and *O. cattienensis*, we refrained from including material found outside of Cambodia, southern Laos, and southern Vietnam in the morphological analyses. A complete taxonomic revision of *O. cinereus* is beyond the scope of this paper (see Discussion).

Gene	Primer name	Reference	Sequence
12S-rRNA	12S2LM	Green et al. (2010)	5' -ACACCGCCCGTCACCCT-3'
	16S5H	Green et al. (2010)	5' -CTACCTTTGCACGGTTAGGATACCGCGGC-3'
16S-rRNA	16S1LM	Green et al. (2010)	5′ -CCGACTGTTGACCAAAAACAT-3′
	16SH1	Green et al. (2010)	5' -CTCCGGTCTGAACTCAGATCACGTAGG-3'
cyt b	H14910	Dahn et al. (2018)	5' -GACCTGTGATMTGAAAAACCAYCGTT-3'
	THRSN2	Dahn et al. (2018)	5′ -CTTTGGTTTACAAGAACAATGCTTTA-3′

Table 2. Primers for PCR and sequencing used in this study.

For all aspects of species concepts and delimitation, we follow the General Lineage Concept (sensu De Queiroz 2007), where a species represents a single evolutionarily independent lineage following a separate trajectory compared to its relatives. We specifically delimit evolutionary independence when lineages are reciprocally monophyletic, exhibit substantial genetic divergence, and are morphologically diagnosable. Museum and other natural history collection acronyms are provided as follows: CAS: California Academy of Sciences, San Francisco, USA; CBC: Centre for Biodiversity Conservation of the Royal University of Phnom Penh, Phnom Penh, Cambodia; DTU: Duy Tan University, Da Nang City, Vietnam; FMNH: The Field Museum, Chicago, USA; IEBR: Institute of Ecology and Biological Research, Hanoi, Vietnam; KIZ: Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; MNHL: Muséum d'Histoire naturelle de Lyon, Lyon, France; MNHN: Muséum National d'Histoire Naturelle, Paris, France; NCBS: National Center for Biological Sciences, Bangalore, India; NHMUK: Natural History Museum, London, UK (formerly BMNH); ROM: Royal Ontario Museum, Toronto, Canada; SIEZC: Southern Institute of Ecology, Ho Chi Minh City, Vietnam; SYNU: Shenyang Normal University, Shenyang, China; TNHC: Texas Natural History Collections, Austin, USA; UMMZ: University of Michigan Museum of Zoology, Ann Arbor, USA; T.Ziegler: personal collection of Thomas Ziegler, Cologne, Germany; USNM: National Museum of Natural History, Smithsonian Institution, Washington, USA; ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany; ZMA: Zoölogisch Museum Amsterdam, Amsterdam, The Netherlands (now included in the Naturalis Biodiversity Center, Leiden, Netherlands; RMNH); ZMMU: Zoological Museum of Lomonosov Moscow State University, Moscow, Russia.

Molecular analyses

We extracted total genomic DNA from muscle tissue preserved in 95% ethanol using a Qiagen DNAeasy Blood and Tissue Kit following manufacturer's protocol. We performed polymerase chain reactions (PCR) to amplify two fragments of mitochondrial DNA (hereafter mtD-NA): the first fragment including partial sequences of 12S ribosomal RNA (rRNA), tRNA-Valine and 16 rRNA genes (12S–16S rRNA) (total length up to 1941 bp) and a complete sequence of the cytochrome *b* gene (cyt *b*) (1,091 bp). Primers used for both PCR and sequencing are summarized in Table 2. PCR protocols for amplifying the 12S-16S rRNA mtDNA fragment roughly follow Green et al. (2010). For both primer pairs of 12S and 16S rRNA, we used the following PCR protocol: (1) initial denaturation step at 94°C for 5 min; (2) 35 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 1 min; (3) final extension at 72°C for 10 min; and (4) cooling step at 4°C for storage. For cyt b sequences (fragment up to 1,096 bp) we used a modified PCR protocol of Dahn et al. (2018) with touchdown: (1) initial denaturation step at 94°C for 5 min; (2) 10 cycles of denaturation at 94°C for 1 min, annealing for 1 min with temperature decreasing from 50°C to 45°C (with cool-down at 0.5°C per each cycle) and extension at 72°C for 1 min; (3) 24 cycles of denaturation at 94°C for 1 min, annealing at 45°C for 1 min and extension at 72°C for 1 min; (4) final extension at 72°C for 10 min; and (5) cooling step at 4°C for storage. Successful targeted PCR products were outsourced to Evrogen® (Moscow, Russia) for PCR purification and sequencing. The obtained sequences are deposited in GenBank under the accession numbers OP752578-OP752607 (Table 1).

Our newly obtained sequences of mtDNA and other Oligodon sequences available in GenBank were used to examine the position of O. cattienensis in a matrilineal genealogy of the genus (summarized in Fig. 3). In total, we analyzed mtDNA sequence data for 52 specimens, including 50 samples of approximately 32 species of Oligodon, and outgroup sequences of O. porphyraceus and H. vibakari. Nucleotide sequences were initially aligned in MAFFT v.6 (Katoh et al. 2002) with default parameters, then subsequently checked by eye in BioEdit 7.0.5.2 (Hall 1999) and slightly adjusted for translation when appropriate. MODELTEST v.3.6 (Posada and Crandall 1998) was applied to the alignment to estimate optimal evolutionary models for the dataset analyses under the Akaike Information Criterion (AIC). Mean uncorrected genetic distances (p-distances) were calculated in MEGA 6.0 (Tamura et al. 2013). The matrilineal genealogy was inferred using Bayesian inference (BI) and Maximum Likelihood (ML) approaches. ML was conducted using the IQ-TREE 1.6.10 (Nguyen et al. 2015). Confidence in nodal topology was estimated by non-parametric bootstrapping (ML BS) with 1000 pseudoreplicates (Felsenstein 1985). BI was conducted in MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003); Metropolis-coupled Markov chain Monte Carlo (MCMCMC) analyses were performed run with one cold chain and three heated chains for one million generations and sampled every 1000 generations. Five independent MCMCMC run iterations were performed and 1000 trees were discarded as burn-in. The convergence of the runs was checked by examining the likelihood plots in TRACER v1.6 (Rambaut et al. 2014); the effective sample sizes (ESS) were all above 200. Nodal support was assessed by calculating posterior probabilities (BI PP). The best-fitting model for both BI and ML analyses of the 12S-16S rRNA fragments suggested by the AIC was the GTR+G+I model. For cyt b, following the AIC, the GTR+G model was used for the first codon partition, the GTR+G+I for the second codon partition and the HKY+G+I for the third codon partition. We a priori regarded tree nodes with BI PP values over 0.95 and ML BS values 75% or greater as sufficiently resolved, while BI PP values between 0.95 and 0.90 and ML BS values between 75% and 50% were regarded as tendencies. Lower values were regarded as indicating unresolved nodes (Huelsenbeck and Hillis 1993).

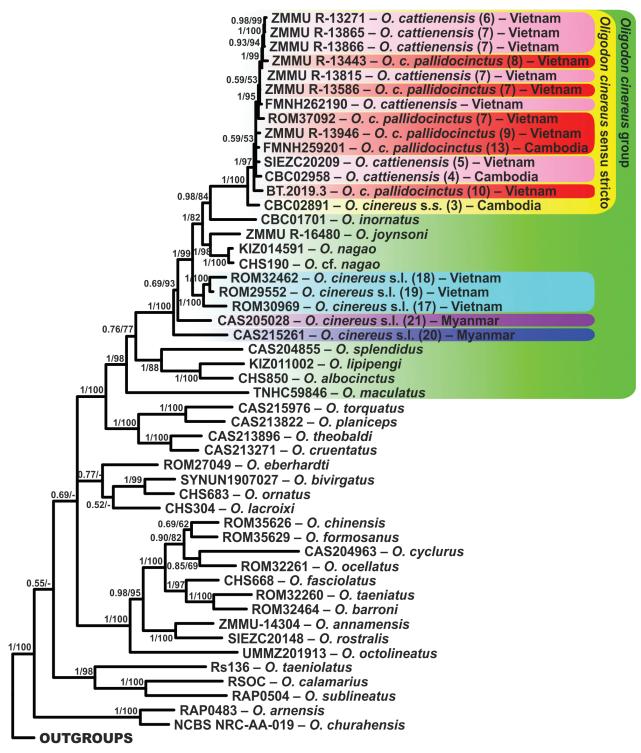
Morphological analyses

Sex was determined by a ventral insertion near the tail base to look for the presence or absence of hemipenes. Body measurements such as Snout-Vent-Length (SVL), Tail Length (TailL) and Total Length (TotalL) were taken by straightening preserved specimens along a flexible ruler. Dorsal scales were counted anteriorly at one head length behind the head, at midbody, namely halfway between the terminus of the head and the vent, and posteriorly at one head length anterior to the cloacal plate (given as anterior-midbody-posterior in the description); ventral scales were counted according to Dowling (1951); the tail tip was not included in the number of subcaudal scales; counts for head scales are given in left/right order. The number of total body scales is the sum of the number of ventral scales, the cloacal plate (considered a single scale regardless of whether it is single or divided), and the number of subcaudal scales. When male specimens had their hemipenes everted or partially everted during preservation, their organs were examined and described in detail. Hemipenial terminology follows Dowling and Savage (1960) unless otherwise noted.

We adapted a data analysis workflow popularized by Chan and Grismer (2021) to determine whether significant differences in morphology exist between the three OTUs. All statistical analyses were conducted in R version 4.1.2 (R Core Team 2022). We used Shapiro-Wilks Tests and Levene's Tests to evaluate whether morphological characters in the dataset follow assumptions of normality and homoscedasticity, respectively. Because most of the characters used in the dataset failed these assumptions, we elected to use non-parametric tests for the remaining data analyses. These tests offer a more conserved approach for discerning morphological differentiation between taxa. First, we used a Kruskal-Wallis Test (the non-parametric alternative to ANOVA) to evaluate whether morphological characters in the dataset contained significant differences. In addition, we performed Mann-Whitney

U tests between males and females to evaluate whether any characters exhibited sexual dimorphism in our entire dataset. Sample sizes were too low to test for dimorphism in morphological characters within each OTU. In all univariate tests, differences between characters were determined to be statistically significant when p < 0.05. After univariate analysis, we log-transformed the dataset and conducted a Principal Components Analysis (PCA) using the prcomp() command in R on the remaining residuals to determine whether there was visible structure in the morphological variation observed in each OTU. All data used in the PCA were scaled to standard deviation to help eliminate the effects of covariance and ensure the data was distributed normally. The following ten morphological characters were used for univariate and multivariate statistical analyses (abbreviations in parentheses): TailL/ TotalL ratio (TAILR), midbody dorsal scale rows (MSR), ventrals (VEN), subcaudals (SC), total body scales (TO-TAL), subcaudal ratio (SCR), supralabials (SL), number of supralabials in contact with the eye (SLE), infralabials (IL), number of infralabials in contact with the anterior chin shields (ILCS), and the number of anterior temporal scales (AT).

Results


Molecular analyses

The final concatenated alignment containing both the 12S-16S rRNA fragment and cyt b gene sequences contained 3032 base pairs, of which, 1759 sites were conserved, 1242 sites were variable, and 858 were found to be parsimony informative. The transition-transversion bias I was estimated as 1.3. Nucleotide frequencies were 37.4% (A), 23.0% (T), 25.1% (C), and 14.5% (G). The uncorrected p-distances for the 12S-16S rRNA fragment among examined Oligodon species is presented in Table 3. The interspecific genetic distances within examined Oligodon varied significantly and ranged from p=0.2% between O. cf. cinereus clade 4 (sensu Li et al. 2020) and Oligodon nagao David et al., 2012, to p=9.0% between Oligodon barroni (Smith, 1916) and O. inornatus (Table 3). The dramatic degree of genetic differentiation (very high and very low genetic distances) between some species could reflect incomplete taxonomic sampling of Oligodon within the phylogeny (Green et al. 2010; David et al. 2011, 2012).

The phylogenetic relationships within the genus *Oligodon* inferred by our mtDNA-based analyses (Fig. 3) are generally consistent with the results of previous authors (Green et al. 2010; Nguyen et al. 2020; Mirza et al. 2021). Both the ML and BI trees show five well supported clades, one of which resembles the morphologically defined *Oligodon cinereus* species group (*sensu* Smith 1943; Wagner 1975; Green et al. 2010; David et al. 2011). The specimens of *O. cattienensis* were recovered within the *Oligodon cinereus* species group and all clustered

Table 3. Mean uncorrected genetic p-distances (percentage) of 12S–16S rRNA sequences between (below diagonal) and within (diagonal, bold font) the species and lineages of the Oligodon cinereus species oronn and other Olivodon taxa included in this study Olivodon cinereus set includes samples from O continuencia O c cinereus and O c nallidocinctus OTUs

	Species	-	7	e	4	S	9	7	×	6	10	11	12	13	4	15	16 1	17 1	18	9 2	20 21	1 22	53	3 24	25	26	27	28	29	30	31	32	33
-	O. cinereus s.s.	0.3																															
5	O. inornatus	2.0																															
3	O. joynsoni	2.6	2.9																														
4	O. arnensis	5.9	7.2	7.2																													
S	O. taeniolatus	4.6	5.5	6.2	5.5													-		-													
9	O. chinensis	6.2	7.5	7.8	5.8	6.4	_																										
5	O. formosanus	5.4	7.0	6.9	4.8	5.5	5 1.3											-		-													
~	O. annamensis	4.4	6.2	6.2	5.3	5.9	5.3	4.4						\vdash	\vdash	\vdash		\vdash	-	-			-										
6	O. rostralis	6.3	7.7	7.8	6.2	6.2	4.6	4.2	3.7									-		-													
10	O. cyclurus	4.8	6.8	6.5	7.9	7.1	6.4	. 6.0	5.5	6.0										-													
Ξ	O. calamarius	7.1	6.8	6.9	6.5	4.4	1 7.0	6.2	6.2	7.0	7.5							-		-													
12	O. sublineatus	5.1	6.1	6.3	5.5	3.6	6.7	5.8	5.4	6.7	7.2	3.1						-		-													
13	O. eberhardti	5.4	6.0	6.7	6.0	6.2	6.4	. 6.0	5.7	6.8	7.7	6.6	5.4			-		-		-													
14	O. splendidus	3.6	4.4	4.7	6.5	4.8	5.9	5.9	6.4	7.0	6.2	5.7	4.9	6.2				-		-													
15	O. cinereus 1	3.5	3.2	3.4	7.3	5.6	6.9	6.5	6.1	7.6	6.3	6.7	6.2	5.8	4.2																		
16	O. cinereus 2	2.4	2.2	2.4	6.2	4.6	5 6.2	5.7	5.1	6.6	5.5	5.5	4.9	4.9	2.9	1.7																	
17	O. cinereus 3	3.4	2.9	3.6	7.2	5.5	6.9	6.4	5.8	7.1	6.4	6.0	5.4	5.5	4.4	3.1 1	1.5 -			-													
18	O. torquatus	4.4	5.9	5.6	6.5	6.4	1 7.3	6.4	5.1	7.0	6.6	7.3	7.0	6.4	5.7	5.6 4	4.4 5	5.5 -		-													
19	O. planiceps	4.6	6.2	5.6	7.2	5.9	7.3	6.4	5.9	7.0	7.3	6.2	6.5	7.3	5.3	5.9 4	4.6 5	5.3 3	ن ا														
20	O. theobaldi	3.4	5.1	4.2	5.5	4.2	5.9	5.1	4.2	5.7	5.5	5.9	5.8	5.5	4.0	4.3 3	3.1 4	4.6 2	2.2 2.6	- 9													
21	O. cruentatus	4.0	5.7	4.9	6.2	4.8	8 6.6	5.7	4.8	6.4	5.7	6.6	6.5	6.2	4.6 4	4.9 3	3.7 5	5.3 2	2.9 3.3		0.7 —	1											
52	O. octolineatus	7.7	8.8	8.9	8.1	7.7	7 6.8	5.9	4.6	4.6	8.2	7.5	7.4	7.7	8.4	8.2 7	7.3 7	7.1 8	8.6 8.6		7.0 7.7	-											
23	O. maculatus	3.6	3.8	4.7	5.3	4.2	2 5.7	5.3	6.0	7.3	6.4	5.7	4.3	4.9	3.1	4.2 3	3.3 4	4.0 5	5.5 5.5		4.0 4.6	.6 8.4	4										
24	O. lipipengi	4.5	4.4	5.3	6.7	5.3	6.2	5.7	5.3	5.9	5.7	5.9	5.6	6.2	4.6	4.6 3	3.7 4	4.4 6	6.6 6.2	.2 5.1	.1 5.3	.3 6.2	2 4.4	4									
25	O. nagao	2.2	1.8	1.6	6.5	5.5	5 6.2	5.7	5.5	7.0	5.7	6.6	6.1	5.5	4.0	2.1 1	1.5 2	2.7 4	4.8 5.3		3.5 4.2	.2 8.1	1 3.5	5 4.2									
26	O. bivirgatus	4.8	5.9	6.4	6.0	5.1	6.8	6.4	5.1	7.0	7.1	5.7	4.5	4.9	5.7	5.8 5	5.1 6	6.4 6	6.8 6.8		5.3 5.9	9 8.4	4 4.6	6 6.2	5.7								
27	O. ornatus	5.2	6.4	6.9	5.5	4.8	8 6.2	5.3	4.8	6.6	6.8	5.1	4.3	4.	5.9 (6.3 5	5.5 6	6.4 6	6.2 6.4		4.8 5.5	5 7.7	7 4.6	6 6.4	1 6.2	2.2							
28	O. albocinctus	4.5	4.8	5.8	6.2	5.3	5.5	5.5	5.1	5.3	6.2	5.7	5.2	6.2	4.2	4.8 3	3.7 4	4.9 6	6.8 6.4	.4 5.1	.1 5.7	.7 5.7	7 4.4	4 2.0) 4.6	5.7	6.4						
29	O. cinereus 4	2.3	2.0	1.8	6.2		5.9	5.5	5.7	6.8	6.0	6.8	6.1	5.5	4.2	2.3 1	1.8 2	2.9 5	5.1 5.5		3.7 4.4	4 8.1	1 3.5	5 4.0	0.2	5.9	6.4	4.4					
30	O. fasciolatus	5.4	7.5	7.3	6.2	5.7	7 3.7	3.3	4.2	4.6	4.4	6.4	6.3	7.1	6.2	7.1 6	6.2 7	7.1 5	5.9 6.8	.8 5.1	.1 5.7	7 6.2	2 6.4	4 6.2	6.6	6.4	5.3	5.9	6.8				
31	O. lacroixi	4. 4.	5.5	6.0	5.1	4.6	5.9	5.1	4.6	5.5	6.8	5.1	5.2	3.5	5.5 5	5.2 4	4.2 5	5.5 5.	5.7 6.2		4.2 4.8	.8 6.4	4 5.1	1 5.1	5.1	3.7	3.5	4.8	5.3	4.6			
32	O. taeniatus	5.8	7.9	7.6	6.5	6.4	4.0	3.5	4.2	4.2	3.8	7.0	7.0	7.3	6.4	7.4 6	6.4 6	6.9 6.9	6.2 6.8		4.8 5.5	5 5.9	9 6.6	6 6.6	6.8	7.0	5.9	6.4	7.0	2.0	5.7		
33	O. barroni	7.0	9.0	8.7	7.9	7.7	7 5.1	4.6	5.5	5.3	5.3	8.1	8.1	. 8.6	7.5 8	8.5 7	7.5 8	8.0 7	7.0 7.	7.9 6.	6.2 6.8	.8 6.6	6 7.9	9 7.3	9.7.8	8.4	7.3	7.0	8.1	3.1	6.6	2.4	
34	O. ocellatus	5.4	7.0	7.3	6.7	7.0	4.2	3.7	4.6	4.4	4.0	7.7	7.2	7.5	6.6 (6.9 6	6.2 6	6.6 7.	7.7 7.	7.3 6.	6.2 6.8	.8 5.9	9 6.6	6 5.5	5 6.2	6.4	6.6	5.7	6.4	3.7	5.5	3.3	4.4

Figure 3. Molecular phylogeny based on mtDNA sequences (12S–16S rRNA and cyt *b* genes) of *Oligodon cattienensis*, *Oligodon cattienensis*, *Oligodon cattienensis*, *Oligodon cattienensis* and *O. cattienensis* and *C. cattienensis* and *C*

with samples of *O. cinereus* from Cambodia and southern Vietnam (BI 1.00/ML 100), including those whose specimen vouchers were morphologically identified as *O. cinereus cinereus* and *O. cinereus pallidocinctus*. Intraspecific distances were counted only for the members of this clade and amounted to 0.3%. This divergence value is significantly lower than the genetic differentiation between most of other recognized *Oligodon* species (Table 3). Samples of *O. cinereus* and *O. cattienensis* from southern Vietnam and Cambodia were recovered paraphyletic, suggesting very weak support for evolutionary independence between the two taxa. Moreover, the sequences of *O. cinereus* from Myanmar, China, and northern Vietnam were found to be paraphyletic respective to other members of the *O. cinereus* group, such as *O. inornatus*, *O. joynsoni* and *O. nagao*.

Dataset		Both Sexes			Males			Females	
Character	PC1	PC2	PC3	PC1	PC2	PC3	PC1	PC2	PC3
Standard deviation	1.850557	1.508423	1.278185	1.940926	1.633927	1.342585	1.916619	1.343130	1.043076
Proportion of Variance	0.311320	0.206850	0.148520	0.342470	0.242700	0.163870	0.459180	0.225500	0.136000
Cumulative Proportion	0.311320	0.518170	0.666700	0.342470	0.585170	0.749040	0.459180	0.684680	0.820680
Eigenvalues	3.424560	2.275340	1.633757	3.767196	2.669717	1.802536	3.673427	1.803998	1.088008
TailLR	0.503256	-0.006110	0.200619	0.457408	-0.118357	-0.227457	0.482489	-0.162017	0.149240
MSR	0.144185	0.023893	-0.178296	0.176297	-0.110583	0.161378			—
VEN	-0.158522	0.555766	-0.099219	-0.182414	-0.483959	0.101803	0.498420	-0.166028	-0.084618
SC	0.502171	0.168735	0.182013	0.419963	-0.305378	-0.192145	0.018229	-0.732140	-0.011911
TOTAL	0.166733	0.580147	0.020919	0.090520	-0.562103	-0.023934	0.512555	0.002566	-0.084913
SCR	0.513058	0.012518	0.198012	0.459296	-0.161628	-0.216211	0.154397	-0.028541	-0.877349
SL	0.004413	0.332873	0.080875	-0.251949	-0.386279	0.055124	-0.298365	-0.594549	0.051445
SLE	-0.043070	0.362023	-0.385916	-0.156117	-0.326579	0.436096			_
IL	-0.176045	0.183687	0.419863	-0.304766	-0.181974	-0.348231	0.056616	-0.233668	0.035099
ILCS	-0.292082	0.217417	0.373393	-0.328878	-0.121088	-0.393823	-0.373727	-0.035311	-0.435425
AT	0.198575	0.049395	-0.611689	0.204971	-0.023776	0.598362			—

Table 4. Summary statistics and PCA scores for the *O. cattienensis* and *O. cinereus* OTUs studied. Abbreviations are listed in the materials and methods.

Morphological analyses

Within our sample of 37 specimens, all but two characters (SC and SCR) in this study rejected the assumptions of normality and homoscedasticity. We note that the name-bearing type specimen of O. cinereus (NHMUK 1946.1.1.25) has a broken tail and was thus excluded from the multivariate analyses but kept for univariate comparisons. No morphological characters exhibited significant differences between sexes within the entire dataset, except for the number of anterior temporal scales (AT), which was weakly dimorphic (p=0.041). We did not have an adequate sample size to test for sexual dimorphism between individual OTUs. Kruskal-Wallis Tests on combined male and female datasets showed no statistically significant differences between OTUs (p=0.08403-0.69470). P-values for males ranged from 0.04105 (VEN) to 0.59240 (IL), and 0.08606 (SCR) to 0.67780 (SL and ILCS) for females. The number of ventrals between males was the only character determined to be significant based on the Kruskal-Wallis Test results (p=0.04105), although this likely reflects the small sample size of male O. c. cinereus (n=3). When a pairwise Mann-Whitney U Test was performed on male VEN between the OTUs cinereus/cattienensis and cinereus/pallidocinctus with the Holm-Bonferroni correction applied, none of the values were significant (p=0.06900 and p=0.06300, respectively). Furthermore, two of the O. c. cinereus specimens have 164 and 165 ventrals respectively, overlapping with the other two OTUs. Summary statistics of all OTUs can be found in Tables 4 and 5.

The PCA plot shows broad overlap between OTUs for O. cattienensis, topotypic O. cinereus cinereus and O. cinereus pallidocinctus (Fig. 4). For the dataset containing both sexes, PC1 accounted for 31.1% of the total vari-

ance and loaded most heavily for SCR, TailLR and SC. PC2 accounted for 20.8% of the total variance and loaded most heavily for VEN and TOTAL. PC3 accounted for 14.9% of the total variance and loaded most heavily for AT, SLE, IL and ILCS. We therefore interpret PC1 to represent variation in tail length and subcaudal scales, PC2 for the number of body scales and PC3 for labial and other cephalic scales. The three principal components represent 66.7% of the total cumulative variance in the analysis. For males, PC1 accounted for 34.2% of the total variance and loaded most heavily for SCR, TAILR, and SC. PC2 accounted for 24.3% of the total variance and loaded most heavily for TOTAL and VEN. PC3 accounted for 16.4% of the total variance and loaded most heavily for AT and SLE. We interpret PC1 to represent variation in tail length and subcaudal scales, PC2 for number of body scales and PC3 for labial scales and temporal scales, with the three principal components representing 74.9% of the cumulative variance in the analysis. For females, PC1 accounted for 45.9% of the total variance and loaded most heavily for SL, TOTAL, and TAILR. PC2 accounted for 22.6% of the total variance and loaded most heavily for SCR and SC. PC3 accounted for 13.6% of the total variance and loaded most heavily for SLE and ILCS. We interpret PC1 to represent variation in tail length, body scales and labial scales, PC2 for the number of subcaudal scales and PC3 for labial scales, with the three principal components representing 82.1% of the cumulative variance in the analysis. The combined univariate and multivariate analyses indicate that O. cattienensis and its sympatric congener O. cinereus pallidocinctus occupy the same morphospace. Furthermore, the analyses show that topotypic O. cinereus bearing a uniform/reticulated color pattern are not morphologically differentiated from these two taxa.

godon cinereus palli	<i>idocinctus</i> . Means and standard dev	iations are given in parentheses when app F). Abbreviations are listed in the Materi	ropriate. Data for males are mark
Character	Oligodon cattienensis	Oligodon cinereus cinereus [topotypic]	Oligodon cinereus pallidocinctus
No. of specimens	11 (8 M, 3 F)	7 (3 M, 4 F)	19 (11 M, 8 F)
TailLR	10.1–13.3 (11.95 ± 0.96)	12.8–14.1 (13.29 ± 0.54)	$9.4-15.0\ (12.30\pm1.45)$
Taill R (M)	10.1 - 13.3(12.11 + 1.02)	139 - 141(1400 + 0.56)	10.1 - 15.0(12.74 + 1.55)

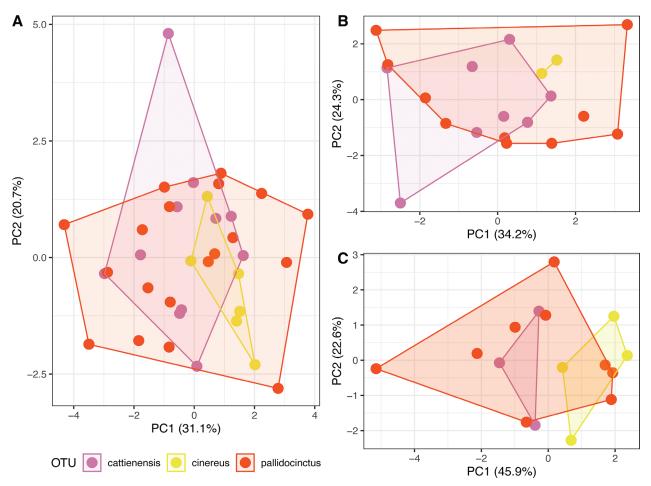
Table 5. Summary statistics for OTUs studied: Oligodon cattienensis, Oligodon cinereus cinereus (topotypic material), and Oliate. Data for males are marked godon ci with an (nd Methods section.

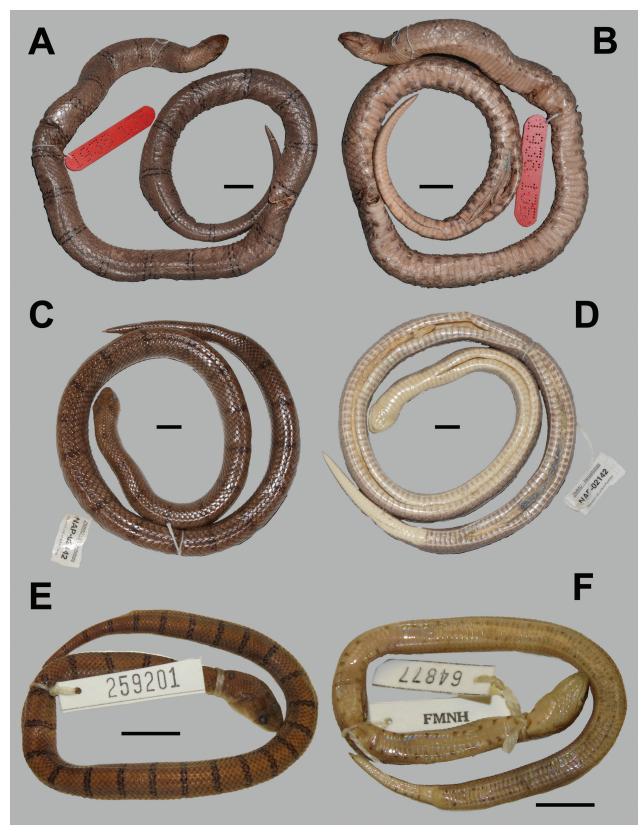
TailLR	$10.1 - 13.3 (11.95 \pm 0.96)$	$12.814.1\;(13.29\pm0.54)$	$9.4{-}15.0~(12.30\pm1.45)$
TailLR (M)	10.1–13.3 (12.11 ± 1.02)	$13.9-14.1 (14.00 \pm 0.56)$	$10.1{-}15.0~(12.74\pm1.55)$
TailLR (F)	10.7-12.1 (11.50 ± 0.73)	$12.8-13.1 (12.94 \pm 0.12)$	9.4–13.9 (11.81 ± 1.33)
DSR	17–17–15	17-17-15	17–17–15
VEN	164–179 (171.6 ± 4.2)	159–171 (167.3 ± 5.8)	164–177 (170.9 ± 4.0)
VEN (M)	164–179 (171.3 ± 4.5)	159–165 (162.0 ± 4.2)	165–177 (171.4 ± 4.1)
VEN (F)	166–176 (171.0 ± 4.4)	166–176 (170.0 ± 4.5)	164–176 (170.4 ± 4.0)
SC	30-37 (33.3 ± 2.2)	33-37 (35.5 ± 1.5)	27-41 (34.0 ± 3.7)
SC (M)	30-37 (33.8 ± 2.4)	35–37 (36.0 ± 1.4)	27-41 (35.1 ± 4.3)
SC (F)	31-33 (32.0 ± 1.0)	33-37 (35.3 ± 1.7)	28-36 (32.6 ± 2.7)
TOTAL	197–213 (205.9 ± 5.2)	197–211 (203.7 ± 4.7)	196–214 (205.8 ± 5.4)
TOTAL (M)	197–213 (206.0 ± 5.9)	197–201 (199.0 ± 2.8)	196–214 (207.4 ± 6.2)
TOTAL (F)	202–210 (205.7 ± 3.6)	203-211 (206.0 ± 3.5)	197–210 (204.0 ± 3.8)
SCR	$14.917.6~(16.15\pm0.85)$	$16.1 - 18.8 (17.44 \pm 0.98)$	$13.7 19.3 \; (16.47 \pm 1.55)$
SCR (M)	$14.917.6~(16.37\pm0.88)$	$17.4{-}18.8~(18.10\pm0.97)$	$13.8{-}19.32~(16.89\pm1.76)$
SCR (F)	$15.1 - 15.8 (15.56 \pm 0.38)$	$16.1-18.1 (17.12 \pm 0.93)$	$13.7 - 17.6 (15.96 \pm 1.28)$
LOREAL Present		Present	Present
SL	8/8-8/9	8/8	7/7-8/8
SLE	4+5, 5+5	4+5	4+5
IL	7/7-8/8	7/8-8/8	7/7–9/9
ILCS	4/4-5/5	4/4	3/3-5/5
AT	1–2	1	1–2

The remaining traits Vassilieva et al. (2013) used to distinguish O. cattienensis from its congener O. cinereus include an entire nasal scale, the head bearing prominent dark markings, red ventral coloration in juveniles, and the presence of a "forked" hemipenis. After a re-examination of all the name-bearing type specimens and our additional material, we found that most of these characters overlap with O. cinereus. First, the nasal scale in O. cattienensis is said to be entire in the species diagnosis, but in the description of the holotype (ZMMU Re-13865) by Vassilieva et al. (2013), it is stated that the scale is subdivided at the bottom half by a suture running below the nostril. We also found that one of the paratypes (ZMMU Re-11473), clearly had a divided nasal and possessed a suture above and below the nostril on either side of the head. The prominent dark markings on the head found across O. cattienensis also appear to have little diagnostic value when compared to O. cinereus. All specimens we examined consistently bear a dark-edged orbital bar stretching from the margins of the lip up to the prefrontal and frontal scales, a temporal bar stretching from the parietals down towards the nape, and an arrow-shaped chevron stretching from the anterior edge of the parietals to the nape. In larger specimens, the color of the head markings may vary from light gray to darker brown, but the composition of the head pattern is consistent amongst all OTUs. Ventral coloration is also variable in O. cinereus and becomes unreliable when examining large series of preserved specimens, because red pigment quickly fades away

in preservative fluids and turns cream or yellow in old specimens (Figs 5-6). Finally, Vassilieva et al. (2013) state that O. cinereus referrable to O. cinereus pallidocinctus can be distinguished by having white, blackedged crossbars, and unspotted ventrals. However, the type specimen of Simotes violaceus pallidocinctus (MNHN-RA-1938.0135) has spots on its ventral scales, and 13 of the 16 O. cinereus pallidocinctus specimens in our sample have small dark spots on the margins of the ventral surface (Fig. 6).

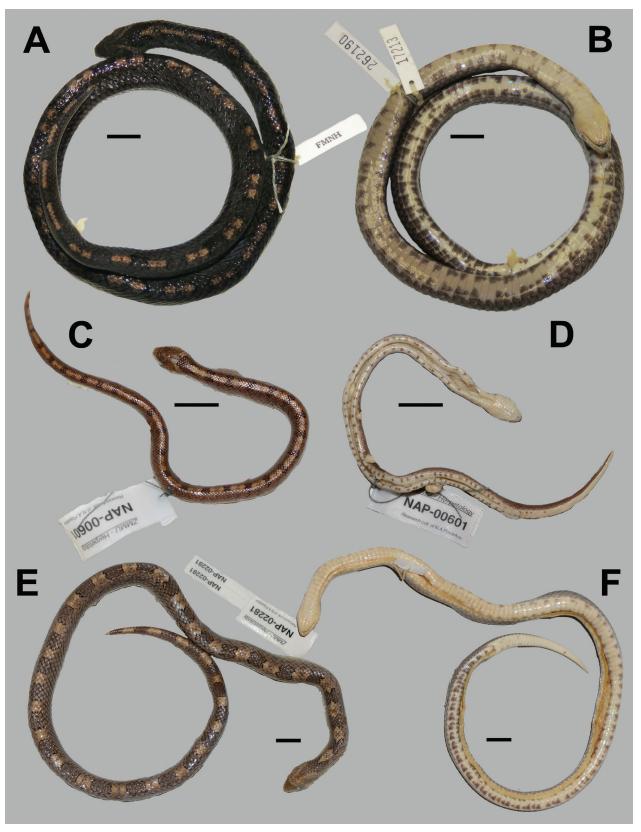
The biggest difference between O. cattienensis and O. cinereus is the shape of the hemipenes (forked vs. unforked, respectively). The difference presented by this character, however, is due to inaccurate terminologies used to describe the organ. In the case of O. cinereus sensu lato, the retracted hemipenis of male specimens is unilobed (= unforked) with "papillae"-like appendages in-situ, but our examination of organs that are partially everted shows that the hemipenis is bilobed (= forked) with the lobes bifurcating medially along the capitulum before extending apically as large tapering awns (Fig. 7). Two bifurcating awn-shaped lobes are clearly seen on the hemipenis in ZMMU Re-13866 of O. cattienensis in Vassilleva et al. (2013) and in specimen FMNH 262190 examined by us (Fig. 7A-B). By correctly interpretating the retracted and everted hemipenial morphology according to standard terminologies (Dowling and Savage 1960), it is clear O. cattienensis falls within the variation of O. cinereus, and thereby the O. cinereus species group.




Figure 4. Principal Components Analyses (PCAs) conducted on both sexes (A), only males (B) and only females (C) for OTUs studied: *Oligodon cattienensis* (pink circles), *Oligodon cinereus cinereus* (yellow circles) and *Oligodon cinereus pallidocinctus* (red circles).

Discussion

Preliminary remarks on the Oligodon cinereus species group


Although it is not our goal to revise the entire O. cinereus species group, we discuss some preliminary taxonomic implications of our results in this section. The mtDNA phylogeny in this study revealed high levels of genetic divergence between sampled populations of O. cinereus. We lacked enough samples of cyt b to create a pairwise distance matrix, but it is likely that the genetic divergences would be higher than we observed in the 12S-16S rRNA matrix (Table 3) as it is a more rapidly evolving marker. Specimens identified as O. inornatus, O. joynsoni, and O. nagao were also recovered between different clades of O. cinereus sensu lato, rendering the species paraphyletic in our tree. This agrees with the conclusions of Green et al. (2010) and David et al. (2011), who state that there is unrecognized diversity within this taxon. Many authors acknowledge that O. cinereus exhibits considerable variation in morphology and coloration across its range. Several color morphs that are now associated with O. cinereus were described as separate species, subspecies and/or variants in the past (Günther 1864; Jan and

Sordelli 1865; Bourret 1934, 1935, 1939, 1941). Most of these were reviewed by Smith (1943), who recognized a total of four morphs (also noted as "forms") analogous with previously described names. Some of these are now known as distinct subspecies (Taylor 1965; Saint Girons 1972; David et al. 2022), although there are also authors that prefer to retain these color patterns as synonyms (Deuve 1970; Wagner 1975). At least three different color morphs correspond with the mixed clade in our phylogeny containing samples of O. cinereus from southern Indochina. These include specimens with rectangular or butterfly-shaped blotches referrable to O. cattienensis, specimens with a uniform dorsum referrable to nominotypical O. cinereus (morphs I-II fide Smith 1943), and specimens with white and black-edged crossbars referrable to O. cinereus pallidocinctus (morph IV fide Smith 1943). Since there is little to no phylogenetic signal for color pattern and broad morphological overlap between different morphs in this clade, we feel it is most appropriate to consider all populations of O. cinereus in southern Indochina as a single taxon instead of several subspecies diagnosed only by color. Consequently, we relegate both O. cattienensis and O. cinereus pallidocinctus as junior synonyms of O. cinereus. Since the type specimen of O. cinereus originates from the study area (i.e., Cambodia), we assign O. cinereus sensu stricto to all uniform/reticu-

Figure 5. Preserved specimens bearing the color pattern referrable to *Oligodon cinereus pallidocinctus* showing overall variation between adults and juveniles. MNHN-RA-1938.0135, holotype of *Simotes violaceus pallidocinctus*, adult, dorsal (A) and ventral (B) views. ZMMU Re-13586, adult, dorsal (C) and ventral (D) views. FMNH 259201, juvenile, dorsal (E) and ventral (F) views. All scale bars equal 10 millimeters in length. Photos by Gernot Vogel (A, B), Platon V. Yushchenko (C, D), and Justin L. Lee (E, F).

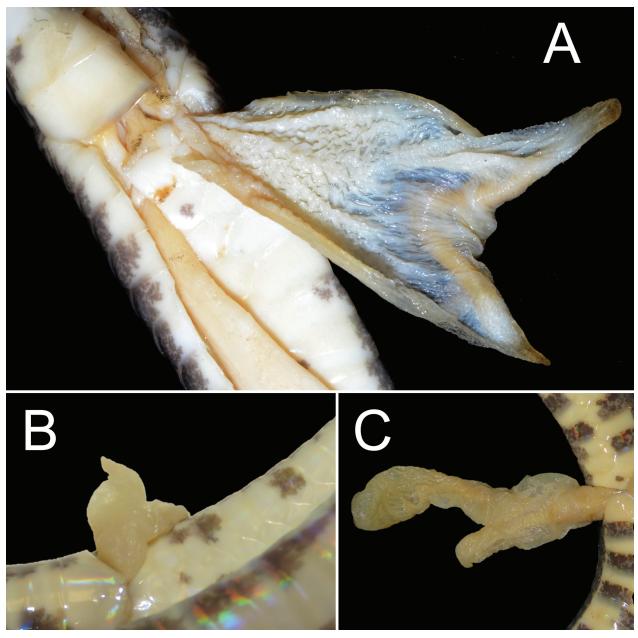

lated, white with black-edged cross-barred and blotched patterned populations found in Cambodia, southern Laos, and southern Vietnam. We have insufficient evidence to properly assess the relationships between the remaining deeply divergent clades of *O. cinereus*, their color morphs, and corre-

Figure 6. Preserved specimens bearing the color pattern referrable to *Oligodon cattienensis* showing overall variation between adults and juveniles. FMNH 262190, adult, dorsal (**A**) and ventral (**B**) views. ZMMU Re-13271, adult, dorsal (**C**) and ventral (**D**) views. ZMMU Re-13865, adult and holotype of *O. cattienensis*, dorsal (**E**) and ventral (**F**) views. All scale bars equal 10 millimeters in length. Photos by Justin L. Lee (A, B) and Platon V. Yushchenko (C–F).

sponding subspecies and synonyms described in the literature. David et al. (2011) showed that there are significant differences in scalation and head shape between *O*.

cinereus resembling the immaculate/reticulated morphs I+II and those resembling the dark cross-barred morph III diagnosed by Smith (1943). These authors specifical-

Figure 7. Partially everted hemipenes from preserved specimens of *Oligodon cinereus*, including (**A**) paratype of *Oligodon cattienensis* (ZMMU Re-13866) with the right organ partially dissected revealing a bilobed condition with awn-shaped lobes, and (**B**) awn-shaped lobes visible on the partially everted organ of another specimen of *O. cattienensis* (FMNH 262190); (**C**) everted hemipenis of *Oligodon cinereus* sensu lato (CAS 240006) from Rakhine State, Myanmar demonstrating a bilobed condition, with the bottommost lobe still partially everted. Photo A by Anna B. Vassilieva and Vitaly L. Trounov, copyright Magnolia Press, reproduced with permission from the copyright holder. Photos B–C by Justin L. Lee.

ly associated Smith's "Form III" (= morph III) with the name *Simotes multifasciatus* Jan & Sordelli, 1865, which would be the oldest available name if this color morph represents a distinct species. Additional investigations are needed to determine if this morph corresponds with any of the lineages identified in this study. In the meantime, we recommend conserving the name *O. cinereus* sensu lato for populations outside of southern Indochina, including the clades revealed by our mtDNA phylogeny. While this leaves the species paraphyletic, we refrain from recommending any more taxonomic changes, as we lack genetic samples from other regions where *O. cinereus* sensu lato occurs — specifically southern China, eastern India, Laos, Myanmar, and Thailand. Separating the remaining lineages as undescribed species, or as *conferatur* populations, would cause additional destabilization.

Outside of southern Indochina, two other synonyms of *O. cinereus* deserve discussion, namely *Holarchus violaceus poilani* Bourret, 1939 and *Holarchus violaceus plurimaculatus* Bourret, 1941. Both were collected in the same region of Quang Tri Province, central Vietnam and have only been mentioned a few times in the literature. Smith (1943) included *H. v. poilani* in his account for *O. cinereus* but did not examine the type specimen or consider it amongst other color morphs. Deuve (1970) considered *H. violaceus plurimaculatus* to be a color va-

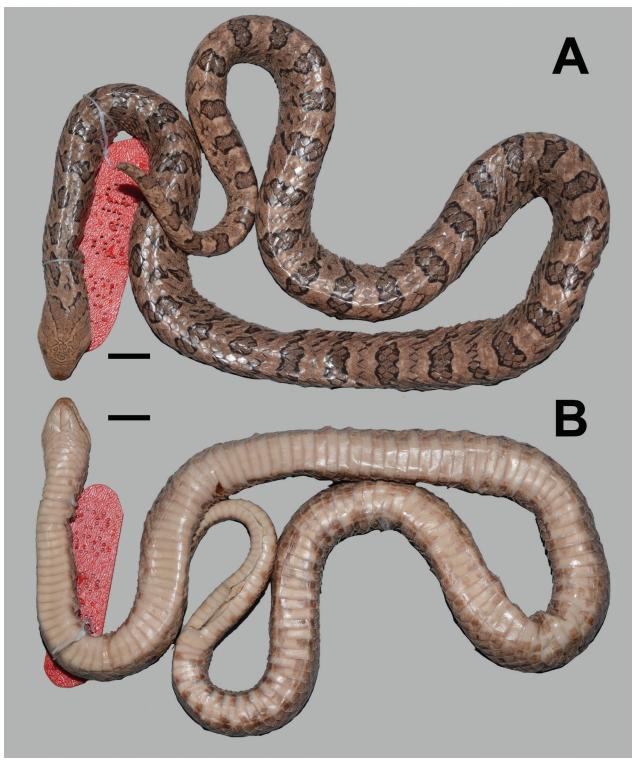


Figure 8. Preserved specimen of *Holarchus violaceus plurimaculatus*, MNHN-RA-1948.0088, dorsal (A) and ventral (B) views, currently considered a junior synonym of *Oligodon cinereus* sensu lato. This taxon along with *Holarchus violaceus poilani* are similar in color pattern to specimens previously recognized as *Oligodon cattienensis* from southern Vietnam and Cambodia. All scale bars equal 10 millimeters in length. Photos by Gernot Vogel.

riety of *O. cinereus* (as *Holarchus violaceus*) but did not address *H. violaceus poilani*. Wagner (1975) examined both names and considered them to represent "blotched" morphs of *O. cinereus*. More recently, David et al. (2022) recognized *H. violaceus plurimaculatus* as a subspecies of *O. cinereus* and referred an additional specimen from Laos to this taxon. Based on their original descriptions (Bourret 1939, 1941), *H. violaceus poilani* and *H. violaceus plurimaculatus* share a strong resemblance to *O. cattienensis* (see Fig. 8). Although these two names were available as synonyms of *O. cinereus* in the literature, Vassilieva et al. (2013) did not address either taxon when they described *O. cattienensis*, despite the notable similarities in morphology. In all three taxa, the dorsum

contains brown or dark-brown rectangular-shaped blotches with black edges. The number of body blotches in H. violaceus poilani and H. violaceus plurimaculatus (28 and 38, respectively), also overlap with the number of blotches found in our sample of O. cattienensis (24-38). However, O. cattienensis (and thereby O. cinereus sensu stricto) differs from H. violaceus poilani and H. violaceus plurimaculatus in relative tail length and the number of ventral and subcaudal scales (40 subcaudals in poilani, 43 in plurimaculatus; SCR 19.4 in poilani, 20.7 in plurimaculatus). These values are at the higher end of subcaudals and subcaudal ratios found in O. cinereus OTUs examined from southern Indochina (subcaudals 27-41 and SCR 13.7-19.3 in both sexes, including O. cattienensis). Whether these two names represent an artifact of geographic variation or a separate taxonomic unit can be tested with additional specimens and molecular data. Until then, we agree with Wagner (1975) and recommend retaining these two names within the synonymy of O. cinereus sensu lato.

Finally, our phylogenetic results tentatively support the validity of O. inornatus, O. joynsoni, and O. nagao, but further sampling of these species and O. cinereus from adjacent regions are needed to demarcate species boundaries between taxa. All three species were historically confused with O. cinereus, and their placement amongst lineages of this species confirms a close relationship. One sample from GenBank (CHS190) identified as O. cf. cinereus was recovered sister to a sample morphologically verified as O. nagao (KIZ 014591) by only 0.4% in 12S-16S rRNA. This GenBank sample originating from Li et al. (2020) is part of a larger phylogenetic dataset on Chinese snakes, with locality data given as "Hainan, China". Since the locality information provided for the sample is not specific and we cannot examine the specimen voucher, we are unsure if it represents a variant of O. cinereus or a range extension of O. nagao (Jiang et al. 2012). Tentatively, we recommend identifying this sample as Oligodon cf. nagao until this specimen and/ or additional material from Hainan Island can be examined. The mislabeling of GenBank samples from studies such as Li et al. (2020) has been criticized by other authors (David et al. 2021; Smart et al. 2021; Mulcahy et al. 2022). It should also be noted that the name Holarchus dolleyanus Cope, 1895 presently considered as a junior synonym of O. cinereus (Smith 1943), was described based on a specimen collected from "China, Hainan" and could be applicable to populations from the island. If the type specimen is found to be conspecific with populations of O. nagao, it is available as a senior synonym for this species.

Problems with hemipenial morphology and Oligodon

Hemipenial morphology has been used as an important morphological character in earlier works on kukri snake systematics (Wall 1923; Smith 1943; Leviton 1962; Wagner 1975). Despite the taxonomic significance of the hemipenis in many snakes, much of the terminology used by researchers to describe the hemipenial morphology of Oligodon appears to be outdated. In fact, most of the terms used to describe the hemipenes of Southeast Asian snake species are based on the works of 19th and 20th century authors, mainly Cope (1893), Pope (1935) and Smith (1943). These earlier authors used the terms "forked" and "unforked" to describe the lobes on the hemipenis, and "papillae" to describe appendages on the lower portion of the hemipenis near its contact with the m. retractor penis magnus. Dowling and Savage (1960) standardized the terminology for snake hemipenes and used "papillae" to describe the ornamental calvces on the organ instead of appendages bordering the retractor muscle. The terms forked and unforked were used to describe the condition of the sulcus spermaticus, rather than the entire shape of the organ (the terms "simple" to describe unforked sulci and "bifurcated" for forked sulci were also used). A forked hemipenis with two lobes sensu Smith (1943) would be referred to as a bilobed organ under Dowling and Savage (1960), whereas an unforked hemipenis would be a unilobed organ. The failure to update standard hemipenial terminology in Oligodon has led to several problems in the recent literature and may be the reason why O. cattienensis was mistakenly described as a distinct species in the O. cyclurus species group, rather than as a blotched color form of O. cinereus. In his unpublished thesis, Wagner (1975) recognized that the retracted hemipenis of O. cinereus appears unilobed (unforked) with distinct "papillae" seen when in-situ, but during the examination of fully everted hemipenes, showed that the organ is clearly bilobed (forked) with large awn-shaped lobes. To correct the use of "papillae", he coined the word "myoectases" as an alternative term to describe the unusual appendages on the retracted hemipenis. Because the sulcus spermaticus in Oligodon cinereus sensu lato is unforked (simple) and does not expand onto the lobes, it is likely that the "papillae" appendages described by Smith (1943) and earlier authors represent the extended awnshaped lobes that form when the organ becomes everted. While many contemporary studies on Oligodon have agreed with Wagner's taxonomic conclusions, they continue to use the hemipenial terminology coined by earlier authors (i.e., Smith 1943). To rectify this issue, we recommend future authors follow the terminology utilized by Dowling and Savage (1960) in future descriptions of the hemipenis. At the very least, the terminology used to describe the hemipenis should be explicitly stated in the methods section of any taxonomic paper.

The case of *O. cattienensis* exemplifies the need to follow a consistent and standard terminology used to describe the hemipenes of Southeast Asian snakes. The case also underlies the importance of an integrative taxonomic approach when dealing with variable and polymorphic snake taxa such as *Oligodon cinereus*. Errors associated with interpreting morphological characters, such as the shape and ornamentation of hemipenes, can lead to inaccurate taxonomic conclusions at the interspecific and intrageneric level, as evidenced here in this study. While the case of *O. cattienensis* is just one example of this problem, it is possible that many other kukri snakes described recently may also suffer from mistakes related to hemipenial morphology. We hope that the concerns we have raised help clarify future taxonomic work on *Oligodon* and facilitate more integrative approaches when treating species within this genus.

Conclusions

In this paper, we provided additional morphological and molecular data to reassess the taxonomic status of the kukri snake species Oligodon cattienensis and O. cinereus within southern Indochina. Based on the mtDNA dataset consisting of the 12S–16S rRNA fragments and cyt b, phylogenetic analyses renders both O. cattienensis and O. cinereus sensu lato paraphyletic, and minimal intraspecific genetic divergences exist between the two taxa ($\sim 0.3\%$). Relationships within the phylogeny agree with past studies conducted on Oligodon (Green et al. 2010; Pyron et al. 2013; Figueroa et al. 2016; Nguyen et al. 2020; Li et al. 2020; Mirza et al. 2021), however our analyses are the first to include the species O. inornatus and O. joynsoni in a molecular dataset. Vassilieva et al. (2013) originally diagnosed O. cattienensis from O. cinereus based largely on color pattern characters, the condition of the nasal scale, and hemipenial morphology. By re-examining the type series and including new specimens, we show that most of these characteristics fall well within the variation observed in O. cinereus, particularly populations found at the vicinity or in sympatry with O. cattienensis in southern Vietnam and Cambodia. In addition, our molecular analyses show that there is little to no phylogenetic signal between the color patterns associated with O. cattienensis, or the white and black-edged crossbarred specimens previously known as O. cinereus pallidocinctus. By considering O. cattienensis and O. cinereus pallidocinctus as junior synonyms of O. cinereus sensu stricto, we lower the total number of species of Oligodon to 89, and the number of species found within Vietnam to 24. This includes the recently described Oligodon tuani Nguyen et al., 2022 discovered in the Langbian Plateau, Dat Lat Province, Vietnam. While the species was not sampled for molecular data, its morphology places it within the O. cyclurus species group and it is not closely related to O. cinereus, however additional sampling is recommended to confirm this. The results in this paper help set the stage for future integrative taxonomic revisions in the O. cinereus species group, which shall hopefully address issues that are beyond the scope of this study.

Acknowledgements

Permissions to conduct fieldwork and collect specimens were granted by the Department of Forestry, Ministry of Agriculture and Rural Development of Vietnam (permit numbers #547/TCLN–BTTN; #432/ TCLN–BTTN; #822/TCLN–BTTN; #142/SNgV–VP; #1539/TCLN–

DDPH; #1700/UBND.VX; 170/ TCLN-BTTN of 07/02/2013; 400/ TCLN-BTTN of 26/03/2014; 831/TCLN-BTTN of 05/07/2013); and the Forest Protection Department of the Peoples' Committee of Dak Lak Province (#1567/UBND-TH, issued 06 April 2011; #388/SNgV-LS, issued 24 April 2019; #995/SNN-CCKL, issued 12 April 2019). The fieldwork in Bidoup-Nui Ba National Park was conducted in accordance with the permission granted by the Forest Protection Department of the Peoples' Committee of Lam Dong Province (#5832/UBND-LN, issued 22 October 2012). The fieldwork in Bu Gia Map NP, fieldwork was conducted in accordance with Agreement #137/HD NCKH of 23 June 2010 on the scientific cooperation between Bu Gia Map NP and Joint Russian-Vietnamese Tropical Research and Technological Center. In Cat Tien National Park, fieldwork was conducted in accordance with Agreement #37/HD on the scientific cooperation between Cat Tien National Park and the Joint Russian-Vietnamese Tropical Research and Technological Center. We thank the following museum and collections staff for permission to examine specimens under their care: Colin J. McCarthy and Patrick Campbell (NHMUK), Joshua Mata and Alan Resetar (FMNH), Truong Quang Nguyen, Canh Xuan Le, and Sinh Van Nguyen (IEBR), Ding-Qi Rao (KIZ), Joël Clary (MNHL), Ivan Ineich, Nicolas Vidal, Patrick David, and Annemarie Ohler (MNHN), Esther Langan, Steve W. Gotte, Rob Wilson, Kenneth L. Tighe, Ronald Heyer, Addison Wynn, and George R. Zug (USNM), Dennis Rödder and Wolfgang Böhme (ZFMK), Esther Dondorp (ZMA), Valentina F. Orlova and Roman A. Nazarov (ZMMU). Special thanks to the editorial team of Zootaxa (Magnolia Press) for permission to use an image from Vassilieva et al. (2013). We thank Eduard A. Galoyan and Peter Geissler for providing the photos of Oligodon in life for this publication. We are grateful to Pham Minh Hieu (Ho Chi Minh City, Vietnam) for help and assistance in the field. NAP and PVY are grateful to Andrei N. Kuznetsov and Leonid P. Korzoun for support and organization of fieldwork. JLL is supported by Aaron M. Bauer (Villanova University, USA) and the Gerald M. Lemole, MD, Endowed Chair Funds. Lastly, we thank Peter Geissler (Museum Natur und Mensch, Freiburg, Germanv) and two anonymous reviewers for their constructive comments on this manuscript. This work was supported by the Russian Science Foundation to Nikolay A. Poyarkov (RSF grant No. 22-14-00037; molecular and phylogenetic analyses).

References

- Amarasinghe AAT, Henkanaththegedara SM, Campbell PD, Riyanto A, Hallermann J, Vogel, G (2021) Description of a new *Oligodon* (Squamata: Colubridae) from Sulawesi, Indonesia, including redescriptions of *O. waandersi* and *O. propinquus*. Herpetologica 77: 195–207. https://doi.org/10.1655/Herpetologica-D-20-00006.1
- Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of *Atractus* ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175–210. https://doi. org/10.3897/zookeys.1121.89539
- Bandara SK, Ganesh SR, Kanishka AS, Danushka AD, Sharma VR, Campbell PD, Ineich I, Vogel G, Amarasinghe AAT (2022) Taxonomic composition of the *Oligodon arnensis* (Shaw 1802) species complex (Squamata: Colubridae) with the description of a new species from India. Herpetologica 78: 51–73. https://doi.org/10.1655/ Herpetologica-D-21-00026.1
- Boie H (1826) Merkmale einiger japanischen Lurche. Isis von Oken 19(2): columns 203–216.

- Boulenger GA (1914) Descriptions of new reptiles from Siam. With notes by Malcolm Smith, MRCS, LRCP. The Journal of the Natural History Society of Siam 1(2): 67–70 + 1 pl.
- Bourret R (1934) Notes herpétologiques sur l'Indochine française. I. Ophidiens de Chapa. Bulletin Général de l'Instruction Publique 13(7): [1933–1934] Annexe 129–138.
- Bourret R (1935) Notes herpétologiques sur l'Indochine française. X. Les serpents de la station d'altitude du Tam-dao. Bulletin Général de l'Instruction Publique 14(8): [1934–1935] Annexe 259–271.
- Bourret R (1939) Notes herpétologiques sur l'Indochine française. XVIII. Reptiles et batraciens reçus au laboratoire des sciences naturelles de l'université au cours de l'année 1939. Descriptions de quatre espèces et d'une variété nouvelles. Bulletin Général de l'Instruction Publique 19(4): Annexe 5–39 + 1 plate.
- Bourret R (1941) Notes herpétologiques sur l'Indochine française. XXI. Reptiles et Batraciens reçus au Laboratoire des Sciences Naturelles de l'Université au cours de l'année 1941. Descriptions de quatre espèces et d'une variété nouvelles. Bulletin Général de l'Instruction Publique 21: [1940–1941], Annexe 16–20.
- Cantor TE (1839) Spicilegium Serpentium Indicorum [parts 1–2]. Proceedings of the Zoological Society of London, Part. VII: 31–34 + 49–55.
- Chan KO, Grismer LL (2021) A standardized and statistically defensible framework for quantitative morphological analyses in taxonomic studies. Zootaxa 5023: 293–300. https://doi.org/10.11646/ zootaxa.5023.2.9
- Cope ED (1893) Prodromus of a new system of the non-venomous snakes. The American Naturalist 27, pt. 1 (no. 317): 477–483.
- Cope ED (1895 "1894") On a Collection of Batrachia and Reptilia from the Island of Hainan. Proceedings of the Academy of Natural Sciences of Philadelphia 46: 423–428 + plate 10.
- Dahn HA, Strickland JL, Osorio A, Colston TJ, Parkinson CL (2018) Hidden diversity within the depauperate genera of the snake tribe Lampropeltini (Serpentes, Colubridae). Molecular Phylogenetics and Evolution 129: 214–225. https://doi.org/10.1016/j.ympev.20-18.08.018
- David P, Vogel G (2012) A new species of the genus Oligodon Fitzinger, 1826 (Squamata: Colubridae) from Pulau Nias, Indonesia. Zootaxa 3201: 58–68. https://doi.org/10.11646/zootaxa.3201.1.4
- David P, Vogel G, Nguyen TQ, Orlov NL, Pauwels OSG, Teynié A, Ziegler T (2021) A revision of the dark-bellied, stream-dwelling snakes of the genus *Hebius* (Reptilia: Squamata: Natricidae) with the description of a new species from China, Vietnam and Thailand. Zootaxa 4911: 1–61. https://doi.org/10.11646/zootaxa.4911.1.1
- David P, Das I, Vogel G (2011) On some taxonomic and nomenclatural problems in Indian species of the genus *Oligodon* Fitzinger, 1826 (Squamata: Colubridae). Zootaxa 2799: 1–14. https://doi. org/10.11646/zootaxa.2799.1.1
- David P, Hauser S, Vogel G (2022) A new species of the genus Oligodon Fitzinger, 1826 (Reptilia: Colubridae) from southern Laos. Taprobanica 11: 12–24 + plates 4–5. https://www.doi.org/10.47605/ tapro.v11i1.273
- David P, Nguyen TQ, Nguyen TT, Jiang K, Chen T, Teynié A, Ziegler T (2012) A new species of the genus *Oligodon* Fitzinger, 1826 (Squamata: Colubridae) from northern Vietnam, southern China and central Laos. Zootaxa 3498: 45–62. https://doi.org/10.11646/zootaxa.3498.1.3
- De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56: 879–886. https://doi.org/10.1080/1063515070-1701083
- Deuve J (1970) Les serpents du Laos. Mémoires ORSTOM (Paris) 39: 1–251.

- Dowling HG (1951) A proposed standard system of counting ventrals in snakes. British Journal of Herpetology 1: 97–99.
- Dowling HG, Savage JM (1960) A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica (Scientific Contributions of the New York Zoological Society) 45: 17–28. https://doi.org/10.5962/p.203350
- Felsenstein J (1985) Phylogenies and the Comparative Method. The American Naturalist 125: 1–15. https://doi.org/10.1086/284325
- Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP (2016) A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE 11: e0161070. https://doi. org/10.1371/journal.pone.0161070
- Fitzinger LJFJ (1826) Neue Classification der Reptilien nach ihren natürlichen Verwandtschaften: nebst einer Verwandtschafts-Tafel und einem Verzeichnisse der Reptilien-Sammlung des K. K. Zoologischen Museum's zu Wien. JG Heubner, Wien, viii + 61 pp. + 1 foldout page. https://doi.org/10.5962/bhl.title.4683
- Geissler P, Nguyen TQ, Poyarkov Jr NA, Böhme W (2011) New records of snakes from Cat Tien National Park, Dong Nai and Lam Dong provinces, southern Vietnam. Bonn Zoological Bulletin 60: 9–16.
- Green MD, Orlov NL, Murphy RW (2010) Toward a phylogeny of the kukri snakes, genus *Oligodon*. Asian Herpetological Research 1: 1–21. http://dx.doi.org/10.3724/SP.J.1245.2010.00001
- Günther ACLG (1864) The Reptiles of British India. The Ray Society, London, xxvii + 452 pp. + 26 plates.
- Hall T (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. Systematic Biology 42: 247–264. https://doi. org/10.1093/sysbio/42.3.247
- Jan G, Sordelli F (1865) Iconographie générale des ophidiens. Atlas. F Sordelli, Milan, Baillière Tindal & Co, London, J-B Baillière & Fils, Paris, and C Bailey Baillière, Madrid, Vol. 1, Livraison 13, plates 1–6.
- Jiang K, Chen T, David P, Vogel G, Hou M, Yang Z, Meng Y, Che J (2013) On the occurrence of *Oligodon joynsoni* (Smith, 1917) (Squamata: Colubridae) in China. Asian Herpetological Research 3: 316–321. https://doi.org/10.3724/SP.J.1245.2012.00316
- Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780. https://doi. org/10.1093/molbev/mst010
- Leviton A (1962 "1963") Contributions to a review of Philippine snakes, I. The snakes of the genus *Oligodon*. Philippine Journal of Science 91: 459–484.
- Li J-N, Liang D, Wang Y-Y, Guo P, Huang S, Zhang P (2020) A largescale systematic framework of Chinese snakes based on a unified multilocus marker system. Molecular Phylogenetics and Evolution 148: 106807. https://doi.org/10.1016/j.ympev.2020.106807
- Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus *Oligodon* Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the western Himalayas. Evolutionary Systematics 5: 335–345. https://doi.org/10.3897/evolsyst.5.72564
- Neang T, Grismer LL, Daltry JC (2012) A new species of kukri snake (Colubridae: *Oligodon* Fitzinger, 1826) from the Phnom Samkos Wildlife Sanctuary, Cardamom Mountains, southwest Cambodia. Zootaxa 3388: 41–55. https://doi.org/10.11646/zootaxa.3388.1.4
- Nguyen HN, Tran BV, Nguyen LH, Neang T, Yushchenko PV, Poyarkov Jr NA (2020) A new species of *Oligodon* Fitzinger, 1826 from the Langbian Plateau, southern Vietnam, with additional information on

Oligodon annamensis Leviton, 1953 (Squamata: Colubridae). PeerJ 8: e8332. https://doi.org/10.7717/peerj.8332

- Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300
- Nguyen SN, Nguyen VDH, Le SH, Murphy RW (2016) A new species of kukri snake (Squamata: Colubridae: *Oligodon* Fitzinger, 1826) from Con Dao Islands, southern Vietnam. Zootaxa 4139: 261–273. https://doi.org/10.11646/zootaxa.4139.2.9
- Nguyen SN, Le MV, Vo T-D-H, Murphy RW (2022) A new species of the genus *Oligodon* Fitzinger, 1826 (Squamata: Colubridae) from Langbian Plateau, Vietnam. Zootaxa 5196: 555–566. https://doi. org/10.11646/zootaxa.5196.4.5
- Nguyen SN, Nguyen LT, Nguyen, VDH, Phan HT, Jiang K, Murphy RW (2017) A new species of the genus *Oligodon* Fitzinger, 1826 (Squamata: Colubridae) from Cu Lao Cham Islands, central Vietnam. Zootaxa 4286: 333–346. https://doi.org/10.11646/zootaxa.4286.3.2
- Passos P, Melo-Sampaio PR, Ramos LO, Grazziotin FG, Fouquet A, Torres-Carvajal O (2022) When the tail shakes the snake: Phylogenetic affinities and morphology of *Atractus badius* (Serpentes: Dipsadidae) reveals some current pitfalls on the snake's genomic age. Anais da Academia Brasileira de Ciências 94: 1–22. https://doi. org/10.1590/0001-3765202220191254
- Pauwels OSG, Thongyai K, Chantong P, Sumontha M (2021) Two new kukri snake species (Colubridae: *Oligodon*) from the Nakhon Si Thammarat Mountain Range, and addition of *O. ocellatus* to the fauna of Thailand. Zootaxa 4908: 537–557. https://doi.org/10.11646/ zootaxa.4908.4.7
- Pauwels OSG, Larsen H, Suthanthangjai W, David P, Sumontha M (2017) A new kukri snake (Colubridae: *Oligodon*) from Hua Hin district, and the first record of *O. deuvei* from Thailand. Zootaxa 4291: 531–548. https://doi.org/10.11646/zootaxa.4291.3.6
- Pope CH (1935) The Reptiles of China. Turtles, Crocodilians, Snakes, Lizards. Natural History of Central Asia, Vol. X. American Museum of Natural History, New York, xlii + 604 pp. + 27 plates.
- Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818. https://doi. org/10.1093/bioinformatics/14.9.817
- Pyron RA, Kandambi HKD, Hendry CR, Pushpamal V, Burbrink FT, Somaweera R (2013) Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution 66: 969–978. https://doi.org/10.1016/j. ympev.2012.12.004
- Qian T, Qi S, Shi J, Lu Y, Jenkins R, Mo Y, Li P (2021) A new species of *Oligodon* H. Boie in Fitzinger, 1826 (Squamata: Colubridae) from Hainan Island, China. Zootaxa 4933: 403–421. https://doi. org/10.11646/zootaxa.4933.3.7
- R-Core Team (2013) R: The R project for statistical computing. https:// www.r-project.org [accessed on 22 Mar 2021]
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/ syy032
- Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Saint Girons H (1972) Les serpents du Cambodge. Mémoires du Muséum National d'Histoire Naturelle, Nouvelle Série, Série A, Zoologie 74(1): 1–170 + 42 plates.

- Smart U, Ingrasci MJ, Sarker GC, Lalremsanga HT, Murphy RW, Ota H, Tu MC, Shouche Y, Orlov NL, Smith EN (2021) A comprehensive appraisal of evolutionary diversity in venomous Asian coralsnakes of the genus *Sinomicrurus* (Serpentes: Elapidae) using Bayesian coalescent inference and supervised machine learning. Journal of Zoological Systematics and Evolutionary Research 59: 2212–2277. https://doi.org/10.1111/jzs.12547
- Smith MA (1917) A new snake and a new frog from Siam. The Journal of the Natural History Society of Siam 2: 276–278.
- Smith MA (1943) The Fauna of British India, Ceylon and Burma, including the Whole of the Indo-Chinese Subregion. Reptilia and Amphibia. Vol. III. Serpentes. Taylor and Francis, London, xii + 583 pp.
- Sumontha M, Kunya K, Dangsri S, Pauwels OSG (2017) Oligodon saiyok, a new limestone dwelling kukri snake (Serpentes: Colubridae) from Kanchanaburi Province, western Thailand. Zootaxa 4294: 316–328. https://doi.org/10.11646/zootaxa.4294.3.2
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
- Taylor EH (1965) The serpents of Thailand and adjacent waters. The University of Kansas Science Bulletin 45: 609–1096.
- Tillack F (2008) Oligodon rhombifer Werner, 1924, a junior synonym of Oligodon ancorus (Girard, 1857) (Reptilia: Squamata: Colubridae).
 Russian Journal of Herpetology 15: 122–128.
- Tillack F, Günther R (2009) Revision of the species of Oligodon from Sumatra and adjacent islands, with comments on the taxonomic status of Oligodon subcarinatus (Günther, 1872) and Oligodon annulifer (Boulenger, 1893) from Borneo (Reptilia, Squamata, Colubridae). Russian Journal of Herpetology 16: 265–294.
- Uetz P, Freed P, Aguilar R, Hošek J (Eds; 2022) The Reptile Database http://www.reptile-database.org [accessed on 21 Mar 2022]
- Uetz P, Cherikh S, Shea G, Ineich I, Campbell PD, Doronin IV, Rosado J, Wynn A, Tighe KA, McDiarmid R, Lee JL, Köhler G, Ellis R, Doughty P, Raxworthy CJ, Scheinberg L, Resetar A, Sabaj M, Schneider G, Franzen M, Glaw F, Böhme W, Schweiger S, Gemel R, Couper P, Amey A, Dondorp E, Ofer G, Meiri S, Wallach V (2019) A global catalog of primary reptile type specimens. Zootaxa 4695: 438–450. https://doi.org/10.11646/zootaxa.4695.5.2
- Vassilieva AB (2015) A new species of the genus Oligodon Fitzinger, 1826 (Squamata: Colubridae) from coastal southern Vietnam. Zootaxa 4058: 211–226.
- Vassilieva AB, Geissler P, Galoyan EA, Poyarkov Jr NA, Van Devender RW, Böhme W (2013) A new species of kukri snake (*Oligodon* Fitzinger, 1826; Squamata: Colubridae) from the Cat Tien National Park, southern Vietnam. Zootaxa 3702: 233–246. https:// doi.org/10.11646/zootaxa.3702.3.2
- Wagler JG (1828) Auszüge aus seinem Systema Amphibiorum. Isis von Oken 21(7): columns 740–744.
- Wagner FW (1975) A revision of the Asian colubrid snakes Oligodon cinereus (Günther), Oligodon joynsoni (Smith), and Oligodon cyclurus (Cantor). Unpublished M.S. Thesis, Baton Rouge, Louisiana State University, 97 pp.
- Wall F (1923) A review of the Indian species of the genus *Oligodon* suppressing the genus *Simotes* (Ophidia). Records of the Zoological Survey of India 25: 305–334.

Appendix I

A list of specimens examined for morphological analyses, organized by operational taxonomic unit (OTU). Numbers found in this appendix follow the numbered list of mapped locations provided in Fig. 2, but not for Table 1.

Oligodon cattienensis (n = 11)

CAMBODIA: CBC 02958, CBC 02954 Stung Treng Province, Prey Lang Wildlife Sanctuary, Spong Village (13°26'N, 105°32'E) (4).

VIETNAM: USNM 90011 Dong Nai Province, Bien Hoa (11); ZMMU Re-13865 (holotype of *O. cattienensis*), ZMMU Re-11473, ZMMU Re-13866, ZMMU Re-13815 (paratypes of *O. cattienensis*), FMNH 262190, ZMMU Re-15699–700 Dong Nai Province, Cat Tien National Park, Nam Cat Tien sector (11°25'30'N, 107°20'25'E) (7); ZMMU Re-13271 Lam Dong Province, Bidoup-Nui Ba National Park, Long Lanh environs, Da Nhim River valley (12°10'N, 108°40'E) (6).

Oligodon cinereus cinereus (n = 7)

CAMBODIA: NHMUK 1946.1.1.25 "Gamboja" [= Cambodia] (1); MNHN-RA-1892.0264 Cambodia, no specified locality (1); MNHN-RA-1970.0437–0.440 Kampong Chhnang Province, Trapaeng Chang, no specified locality (2); CBC 02891 Kampong Speu Province, Kirirom National Park (11°18'N 104°04'E) (3).

Oligodon cinereus pallidocinctus (n = 16)

CAMBODIA: FMNH 259201 Mondolkiri Province, Pichrada District (13).

LAOS: MNHN-RA-1897.0425 Attapu Province, Attapeu [= perhaps the city of Attapu] (14); ZMA 19170 Xékong Province, Dakchung District (15).

VIETNAM: ZMMU Re-13443 Binh Phuoc Province, Bu Gia Map National Park (12°11'N, 107°13'E) (8); MNHN-RA-1937.0022, USNM 90009–90010 Dong Nai Province, Bien Hoa (11); ZMMU Re-13586 Dong Nai Province, Cat Tien National Park, Lagerstroemia Forest, road near the meteorological tower (11°26'N, 107°24'E) (7); NHMUK 1938.8.7.33–34 Saigon [= now Ho Chi Minh City] (12); USNM 73850 Gia Dinh [= now included in Ho Chi Minh City] (12); ZMMU Re-13946 Lam Dong Province, Loc Bao Forest, campground at disturbed forest near river (11°44'N, 107°42'E) (9); IEBR 94, S 0154 (T. Ziegler's personal collection) Quang Binh Province, Phong Nha-Ke Bang National Park, no specified locality (16); MNHL 42 00 0348 (1575) Cochinchine, Tay Ninh [= now Tay Ninh Province]; MNHN-RA-1899.0278 Annam (Indochine) [= central Vietnam]; MNHN-RA-1938.0135 (holotype of *Simotes violaceus pallidocinctus* Bourret, 1934) "Cochinchine" [= extreme southern Vietnam], Ho Chi Minh City (12).