Research Article |
Corresponding author: Teddy Angarita-Sierra ( tgangaritas@unal.edu.co ) Academic editor: Uwe Fritz
© 2021 Juan José Torres-Ramírez, Teddy Angarita-Sierra, Mario Vargas-Ramírez.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Torres-Ramírez JJ, Angarita-Sierra T, Vargas-Ramírez M (2021) A new species of Amphisbaena (Squamata: Amphisbaenidae) from the Orinoquian region of Colombia. Vertebrate Zoology 71: 55-74. https://doi.org/10.3897/vz.71.e59461
|
In northern South America, amphisbaenians are rarely seen among the herpetofauna.Thus, general knowledge about them is very poor. During a herpetological survey in 2012 at Casanare, Colombia, we found two specimens of an unusual Amphisbaena. A third specimen sharing the same morphotype labeled Amphisbaena sp. from Vichada department was found deposided in an Colombian reptile collection. Based on morphological analyses together with phylogenetic analyses of 1029 base pairs of the mitochondrial DNA (mtDNA), we describe a new species of Amphisbaena that inhabits in the Orinoquian region of Colombia. The new species is part of a phylogenetic clade together with A. mertensii and A. cunhai (central-southern Brazil), exhibiting a great genetic distance (26.1–28.9%) between the newly identified lineage versus those taxa, and versus the sympatric taxa A. alba and A. fuliginosa. Morphologically, this new Amphisbaena can be distinguished from their congeners by characters combination of number of preocloacal pores, absence of malar scale, postgenial scales and body and caudal annuli counts. Amphisbaena gracilis is on morphology grounds the most similar species. However, the new species can be distinguished from it by having higher body annuli counts, angulus ories aliegned with the edges of the ocular scales and center of frontal scales, less number of large middorsal segments of the first and second body annulus, and rostral scale visible from above. The description of this new Amphisbaena species points out the urgent need to increase the knowledge of worm lizards in Colombia
burrowing habits, cryptic species, fossorial, integrative taxonomy, mtDNA, worm lizard, South America
Amphisbaenians are one of the most enigmatic and unusual squamates. All species have burrowing habits, but some occasionally venture onto the surface or can be found under objects on the ground (
Since
Colombia is considered to be a megadiverse country in part due to its rich fauna of around 621 species of reptiles (
After the early efforts made by Gans and collaborators during the 20th century, few attempts have been made to carry out a comprehensive taxonomic assessment of the Amphisbaena species distributed in Colombia, as well as in northern South America (
During a herpetological inventory in the department of Casanare, Colombia (
Fieldwork was performed under the scientific research permit for collection of wild specimens of biological diversity for non-commercial purpose issued by CORPORINOQUIA (Research Auto: 500.5712.0380) and the Colombian Ministry of Environment and Sustainable development (MADS) by agreement 083 of 2012. This study was conducted following the Colombian animal welfare law and the collection of wild specimens of the biological diversity acts (Ley 1774, 2016; Decreto 1376, 2013), as well as considering the Universal Declaration on Animal Welfare (UDAW) endorsed by Colombia in 2007.
Fieldwork was carried out in August 2012 in the municipalities of Paz de Ariporo and Orocué, department of Casanare, Colombia. Searches for amphisbaenians were conducted by three researchers from 8:00 to 11:30 and 14:00 to 17:00 for 15 days, with a sampling effort of 97.5 man/hours. We removed covered objects and leaf litter, digging up the ground from 5 to15 cm deep, during three to five minutes for each event. Particularly, we included piles of palm leaves of moriche palm (Mauritia flexuosa L.f., 1782), as part of the microhabitats sampled. Individuals collected were immediately placed into cloth bags for later general procedures of measurement and identification as described by
Molecular distinctiveness and phylogenetic relationships of the new species of Amphisbaena were assessed by analyzing molecular data corresponding to 1029 bp of the NADH dehydrogenase subunit 2 (ND2) gene, mtDNA. We assembled a data set by aligning the sequence from the new species and colombian individuals of A. alba and A. fuliginosa, with homologous sequences from the Antillean and South American amphisbaenian species published in Genbank (Table
Species | Locality | Accession number. ND2 | Voucher | Source |
---|---|---|---|---|
A. alba | Brazil: Vilhena, Rondônia | FJ441943 | CHUNB 12795 |
|
A. alba | Brazil: Jalapão, Tocantins | FJ441948 | CHUNB 30678 |
|
A. alba | Brazil: Minaçu, Goiás | FJ441946 | CHUNB 430 |
|
A. alba | Brazil: Minaçu, Goiás | FJ441947 | CHUNB 435 |
|
A. alba | Brazil: Mariana, Minas Gerais | FJ441941 | JC 795a |
|
A. alba | Brazil: Uruçuí-Una, Piauí | FJ441942 | MTR 5502a |
|
A. alba | Brazil: Manso, Mato Grosso | FJ441940 | MZUSP 88618 |
|
A. alba | Brazil: Lajeado, Tocantins | FJ441944 | MZUSP 94813 |
|
A. alba | Brazil: Guarantã do Norte, Mato Grosso | FJ441949 | UFMT 3468 |
|
A. alba | Brazil: Campo Novo dos Parecis, Mato Grosso | FJ441945 | UFMT 3476 |
|
A. alba | Colombia: Paz de Ariporo, Casanare | MT433762 |
|
This study |
A. anaemariae | Brazil: Brasília, Distrito Federal | FJ441911 | CHUNB 38647 |
|
A. angustifrons | Argentina: Tucuman | FJ441950 | Monteiro 3 |
|
A. anomala | Brazil:Igarapé-Açú, Pará | FJ441955 | MPEG 22139 |
|
A. anomala | Brazil: Sao Antônio de Tauá, Pará | FJ441956 | MPEG 22141 |
|
A. arenaria | Brazil: Canudos, Bahía | KY018695 | MTR23279 |
|
A. bahiana | Brazil: Campo Formoso, Bahía | MG028575 | MZUSP106222 |
|
A. bahiana | Brazil: Campo Formoso, Bahía | MG028574 | MZUSP106221 |
|
A. bolivica | Argentina: Tucuman | FJ441913 | Monteiro 11 |
|
A. bolivica | Argentina: Salta | FJ441912 | Monteiro 8 |
|
A. brasiliana | Brazil: Guarantã do Norte, Mato Grosso | FJ441951 | UFMT3998 |
|
A. caeca | USA: Manati, Puerto Rico | FJ441914 | MVZ 232753 |
|
A. caiari | Brazil: Porto Velho, Rondônia | KJ669333 | MZUSP101602 |
|
A. caiari | Brazil: Porto Velho, Rondônia | KJ669334 | MZUSP104237 |
|
A. camura | Brazil: Aquidauana, Mato Grosso do Sul | FJ441915 | MPEG 21463 |
|
A. carli | Brazil: Sao Desiderio, Bahia | KY352335 | MTR17848 |
|
A. cuiabana | Brazil: Campo Novo dos Parecis, Mato Grosso | FJ441938 | UFMT 3545 |
|
A. cuiabana | Brazil: Campo Novo dos Parecis, Mato Grosso | FJ441939 | UFMT 3546 |
|
A. cunhai | Brazil: Manaus, Amazonas | FJ441916 | LSUMZH13969 |
|
A. darwinii | Brazil: São Jerônimo, Rio Grande do Sul | FJ441936 | MCP 14723 |
|
A. elbakyanae sp. nov. | Colombia: Paz de Ariporo, Casanare | MT433763 |
|
This study |
A. fuliginosa | Brazil | JN700169 | BPN 988 | Genbank |
A. fuliginosa | Brazil: Manso, Mato Grosso | FJ441926 | MTR 3177 |
|
A. fuliginosa | Brazil: Aripuanã, Mato Grosso | FJ441927 | MZUSP 82798 |
|
A. fuliginosa | Peru: San Jacinto, Loreto | FJ441925 | KU 222189 |
|
A. fuliginosa | Colombia: San Martín, Meta | MT433765 |
|
This study |
A. fuliginosa | Colombia: Bucaramanga, Santander | MT433764 |
|
This study |
A. fuliginosa | Colombia: Girón, Santander | MT433766 |
|
This study |
A. hastata | Brazil: Mocambo do Vento, Bahia | FJ441920 | MTR 3555 |
|
A. hastata | Brazil: Mocambo do Vento, Bahia | FJ441921 | MTR 3662 |
|
A. ignatiana | Brazil: Santo Inácio, Bahia | FJ441922 | MTR 3538 |
|
A. ignatiana | Brazil: Santo Inácio, Bahia | FJ441923 | MZUSP 93480 |
|
A. kingii | Brazil: São Jerônimo, Rio Grande Do Sul | FJ441969 | MCP 14720 |
|
A. kingii | Brazil: São Jerônimo, Rio Grande Do Sul | FJ441968 | MCP 14721 |
|
A. kraoh | Brazil: Jalapão, Tocantins | FJ441935 | CHUNB 30676 |
|
A. leeseri | Brazil: Mateiros, Tocantins | FJ441937 | CHUNB 41351 |
|
A. leucocephala | Brazil: Santa Maria Eterna, Bahia | KY352337 | MTR33126 |
|
A. leucocephala | Brazil: Ilheus, Bahia | KY352336 | MTR33467 |
|
A. mertensii | Paraguay: Itapua, Alto Vera | FJ441917 | KU 290721 |
|
A. mertensii | Brazil: Marília, Sao Paulo | FJ441919 | MPEG 21462 |
|
A. mertensii | Brazil: Campo Novo dos Parecis, Mato Grosso | FJ441918 | UFMT 3469 |
|
A. mitchelli | Brazil: Belo Monte, Alagoas | KY018696 | BM137 |
|
A. munoai | Brazil: São Jerônimo, Rio Grande Do Sul | FJ441930 | MCP 14749 |
|
A. pretrei | Brazil: EEEWG, Bahia | KY352338 | MTR22216 |
|
A. pretrei | Brazil: Salvador, Bahia | KY352339 | TM262 |
|
A. roberti | Brazil: Lajeado, Tocantins | FJ441954 | MTR 6770 |
|
A. roberti | Brazil: Marilia | MG028576 | TM16 |
|
A. saxosa | Brazil: Lajeado, Tocantins | FJ441952 | MTR 8830 |
|
A. saxosa | Brazil: Lajeado, Tocantins | FJ441953 | MTR 8831 |
|
A. schmidti | USA: Puerto Rico | AY605475 | MVZ 232754 |
|
A. schmidti | USA: PuertoRico, Marchiquita | NC_006284 | MVZ 232754 |
|
A. schmidti | USA, Manati, Puerto Rico | FJ441924 | MVZ 232756 |
|
A. silvestrii | Brazil, Cuiabá, Mato Grosso | FJ441931 | UFMT 3996 |
|
A. silvestrii | Brazil, Cuiabá, Mato Grosso | FJ441932 | UFMT 3997 |
|
A. uroxena | Brazil, Mucuge, Bahia | MG028577 | MZUSP95987 |
|
A. uroxena | Brazil, Mucuge, Bahia | MG028578 | MZUSP95988 |
|
A. vermicularis | Brazil, Paranã, Tocantins | FJ441928 | CHUNB 35348 |
|
A. vermicularis | Brazil, Paranã, Tocantins | FJ441929 | CHUNB 35349 |
|
A. vermicularis | Brazil, Alagoado, Bahia | MG028579 | MTR11246 |
|
A. vermicularis | Brazil, Santo Inacio, Bahia | MG028583 | MTR11294 |
|
A. vermicularis | Brazil, Serra do Cipo, Minas Gerais | MG028580 | MTR20286 |
|
A. vermicularis | Brazil, Lajeado, Tocantins | MG028582 | LAJ403 |
|
A. xera | — | AY662541 | — |
|
Amphisbaena sp. | Brazil, Pacoti, Ceara | FJ441933 | MTR 169 |
|
Amphisbaena sp. | Brazil, Serra das Confusões, Piauí | FJ441934 | SC 76 |
|
We analyzed the dataset using the unpartitioned and partitioned (i.e., we treated each codon of the protein-coding gene ND2 as distinct partitions) partition schemes. We assessed the optimal partitioning scheme and best-fit evolutionary models using Partitionfinder v1.1.1 and the Bayesian Information Criterion (
We compared the collected amphisbaenians and the individual found in the collection of the Pontificia Universidad Javeriana to other preserved specimens housed in the following colombian biological collections: reptile collection of the Instituto de Ciencias Naturales, Universidad Nacional de Colombia (
We compared the pholidosis of the three specimens analyzed in this study to morphological data available in published references of the 50 nominal four pored Amphisbaena species, as well as to the Amphisbaena species that inhabit the Orinoquian region (Table
Pholidosis comparisons between Amphisbaena elbakyanae sp. nov. and all the four-pored Amphisbaena species from South America.
Species | P | Head scales | Body and caudal scales | Source | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | IS | TS | FPG | SPG | M | PM | BA | CA | DS | VS | SAC | SPC | CCA | AUC | |||
A. elbakyanae sp. nov. | 4 | 3 | 3 | 2–3 | 4 | 0 | 0 | 6–7 | 245–257 | 20–24 | 13–15 | 16–18 | 6–7 | 11–12 | 4 | 6–8 | * |
A. alba Linnaeus, 1758 | 4–10 | 4 | 3 | 5 | 2 | 2–3 | 1 | 12–15 | 198–248 | 13–21 | 30–42 | 35–46 | 10 | Absent | 1, 2, 3, 4, 5, 6 | ||
A. albocingulata Boettger, 1885 | 4 | 3 | 3 | 0 | 183–204 | 23–27 | 12–14 | 15–18 | 7–9 | 4, 5, 7, 8 | |||||||
A. angustifrons Cope, 1861 | 3–6 | 4 | 3 | P | 190–253 | 12–18 | 20–31 | 21–30 | Absent | 4, 5, 9 | |||||||
A. arda Rodrigues, 2003 | 4 | 4 | 3 | 1 | P | 242 | 30 | 23 | 23 | 8 | 5, 10 | ||||||
A. arenaria Vanzolini, 1991 | 4 | 3 | 3 | P | P | 0 | 285–307 | 22–23 | 12–14 | 14–16 | 6–7 | 4, 5, 6, 11, 12 | |||||
A. arenicola Perez & Borges-Martins, 2019 | 4 | 3–4 | 3 | 2 | 2 | 3 | 1 | 6 | 199–216 | 20–22 | 12–14 | 15–18 | 6 | 11 | 8–9 | 8 | |
A. bahiana Vanzolini, 1964 | 4 | 3 | 3 | 204–223 | 14–16 | 12–16 | 14–20 | 4–5 | 5, 13 | ||||||||
A. bedai Vanzolini, 1991 | 4 | 4 | 3 | P | 272–284 | 22–23 | 18–20 | 16–18 | 6 | 5, 14 | |||||||
A. bolivica Mertens, 1929 | 2–6 | 3 | 3 | 200–231 | 18–26 | 27–36 | 26–36 | 3–5 | 4, 5, 6, 15, 16 | ||||||||
A. borelli Peracca, 1897 | 4 | 3 | 3 | 239–245 | 17–19 | 14–16 | 16–20 | 6–8 | 5, 17 | ||||||||
A. brasiliana Gray, 1865 | 4 | 3 | 3 | 213–229 | 11–15 | 18–21 | 18–22 | Absent | 5, 6, 18, 52 | ||||||||
A. camura Cope, 1862 | 3–6 | 4 | 3 | 188–207 | 14–19 | 28–42 | 29–46 | 3–5 | 4, 5, 6, 19, | ||||||||
A. carvalhoi Gans, 1965 | 4 | 3 | 3 | 0 | 231–245 | 19–22 | 12–14 | 16–18 | 7–8 | 4, 5, 20 | |||||||
A. cegei Montero, Sáfadez & Álvarez, 1997 | 4 | 3 | 3 | 3 | 4–5 | 1 | 0 | 179–199 | 22 | 17–22 | 17–23 | 6 | 13–15 | 3–4 | 6–8 | 4, 5, 21, 22 | |
A. cuiabana Strussman & Carvalho, 2001 | 4 | 3 | 3 | 286–292 | 18–20 | 14 | 16 | 9–10 | 5, 23 | ||||||||
A. cunhai Hoogmoed & Ávila-Pires, 1991 | 4 | 3 | 3 | 2 | 2–3 | 0 | 1 | 7–9 | 226–239 | 25–26 | 14–16 | 14–18 | 6 | 7–11 | 5–7 | 4, 5, 6, 24 | |
A. darwinii Duméril & Bibron, 1839 | 2–5 | 3 | 3 | P | 174–199 | 18–25 | 13–19 | 16–23 | 7–10 | 4, 5, 8, 25, 26 | |||||||
A. frontalis Vanzolini, 1991 | 4 | 3 | 3 | 0 | 252–272 | 23–24 | 14–16 | 14–16 | 6–7 | 4, 5, 11 | |||||||
A. fuliginosa Linnaeus, 1758 | 6–9 | 2–3 | 3–4 | 3–5 | 2–6 | 5–7 | 1–2 | 10–14 | 196–218 | 24–30 | 19–28 | 21–28 | 7–10 | 10–16 | 3–6 | 4–7 | 1, * |
A. gracilis Strauch, 1881 | 4 | 3 | 3 | 2 | 4 | 0 | 0 | 7–8 | 224–248 | 21–24 | 13–16 | 14–17 | 6 | 12–13 | 5 | 6–7 | 4, 27, 28, 29, 30 |
A. hastata Vanzolini, 1991 | 4 | 3 | 3 | 266–273 | 40 | 18 | 16 | 12–16 | 4, 5, 31 | ||||||||
A. heathi Schmidt, 1936 | 4 | 3 | 3 | 0 | 183–187 | 32 | 12 | 18–20 | 7–8 | 4, 5, 32 | |||||||
A. hogei Vanzolini, 1950 | 4 | 3 | 3 | P | 177–191 | 15–19 | 10–13 | 14–18 | 4–7 | 4, 5, 8, 33 | |||||||
A. ibijara Rodrigues, Andrade & Lima, 2003 | 4 | 3 | 3 | 1 | 6 | 6 | 1 | 0 | 239–250 | 23–25 | 14–16 | 14–16 | 8–11 | 5, 34, | |||
A. kingii Bell, 1833 | 4 | 3 | 3 | P | P | P | 214–244 | 15–23 | 12–19 | 14–22 | 7 | 5, 35, 36 | |||||
A. lumbricalis Vanzolini, 1996 | 2–6 | 3 | 3 | 0 | 225–247 | 20–26 | 12–16 | 16–20 | 6–10 | 4, 5, 26, 37 | |||||||
A. medemi Gans & Mathers, 1977 | 4 | 3 | 3 | 2 | 2–3 | 3–5 | 1 | 9 | 230–235 | 17–18 | 14–16 | 17–18 | 6–8 | 12–17 | 5–7 | 4, 5, 30, 38 | |
A. munoai Klappenbach, 1960 | 4 | 3 | 3 | 2 | 3 | 0 | 9 | 194–221 | 18–25 | 10–15 | 13–20 | 6–8 | 7–14 | 5–9 | 4, 5, 8, 39 | ||
A. myersi Hoogmoed, 1989 | 4 | 3 | 3 | 221 | 28 | 16 | 16 | 8 | 4, 5, 40 | ||||||||
A. nigricauda Gans, 1966 | 0/4–5 | 3 | 3 | 0 | 192–226 | 19–24 | 9–11 | 13–16 | 6–10 | 4, 5, 8, 41, 42 | |||||||
A. occidnetalis Cope, 1875 | 4 | 4 | 3 | P | 261–279 | 18–26 | 16–19 | 22–27 | 9 | 4, 5, 43 | |||||||
A. pericensis Noble, 1921 | 4 | 3 | 3 | 0 | 198–218 | 16–19 | 12–16 | 16–20 | 6–8 | 4, 5, 44 | |||||||
A. plumbea Gray, 1872 | 4 | 4 | 3 | P | 210–283 | 16–21 | 18–27 | 20–30 | 5–9 | 4, 5, 45 | |||||||
A. polygrammica Werner, 1901 | 4 | 3 | 3 | P | 0 | 270 | 22 | 18 | 16 | – | 4, 5, 36, 46 | ||||||
A. prunicolor Cope, 1885 | 4 | 3 | 3 | 2 | 2 | 0 | 1 | 8 | 180–215 | 18–27 | 10–17 | 14–20 | 7–11 | 4, 5, 8, 47 | |||
A. ridleyi Boulenger, 1890 | 4 | 4 | 3 | P | 172–192 | 14–17 | 16–18 | 20–28 | Absent | 4, 5, 48 | |||||||
A. rozei Lancini, 1963 | 4 | 4 | 3 | 2 | 3 | 0 | 1 | 7 | 205–209 | 20 | 15–16 | 14 | 6–7 | 4, 5, 30, 49, 50 | |||
A. sanctaeritae Vanzolini, 1994 | 4 | 3 | 3 | 269 | 12 | 12 | 6–7 | 5, 51 | |||||||||
A. saxosa Castro-Mello, 2003 | 4 | 4 | 3 | 2 | 2 | 0 | 1 | 8 | 253–272 | 17–21 | 18–24 | 16–21 | 6 | 4 | Absent | 5, 6, 52 | |
A. slateri Boulenger, 1907 | 4 | 3 | 3–4 | 2 | 2–3 | 2–4 | 1 | 0–7 | 176–213 | 20–24 | 10–14 | 14–16 | 6–8 | 10–12 | 7–10 | 4, 5, 36, 53, 54 | |
A. slevini Schmidt, 1936 | 4 | 2 | 2 | 0 | 204–211 | 23–25 | 10–14 | 10–12 | 5–6 | 4, 5, 32 | |||||||
A. spurrelli Boulenger, 1915 | 4 | 4 | 4 | 2 | 2 | 0 | 1 | 7 | 213–222 | 18–23 | 16–18 | 16–18 | 6 | 7 | 4, 5, 30, 56 | ||
A. steindachneri Strauch, 1881 | 4 | 3 | 3 | 256–266 | 17–18 | 14–16 | 16 | 7 | 5, 57 | ||||||||
A. stejnegeri Ruthven, 1922 | 6 | 4 | 2 | 243–247 | 13 | 17–19 | 16–20 | 6 | 9 | 4, 30, 58 | |||||||
A. supernumeraria Mott, Rodrigues & Dos Santos, 2009 | 4 | 3 | 3 | 0 | 2 | 3 | 1 | 0 | 333–337 | 22–23 | 14 | 17–18 | 10–12 | 5, 59 | |||
A. talisiae Vanzolini, 1995 | 4 | 3 | 3 | 2 | 2 | 0 | 1 | P | 205–234 | 17–29 | 10–14 | 14–18 | 5–8 | 7–14 | 6–8 | 4, 5, 60, 61 | |
A. townsendi Stejneger, 1911 | 4 | 4 | 3 | P | 261–279 | 22–26 | 16–19 | 22–27 | 7–8 | 5, 62 | |||||||
A. trachura Cope, 1885 | 3–4 | 3 | 3 | P | 168–208 | 15–25 | 14–24 | 16–24 | 6–8 | 9–14 | 5–9 | 8, 25, 47, 63 | |||||
A. tragorrhectes Vanzolini, 1971 | 4 | 4 | 3 | P | 169 | 31 | 12 | 12 | 12–14 | 4, 5, 64 | |||||||
A. vanzolinii Gans, 1963 | 4 | 2 | 2 | 200–231 | 28–31 | 12–16 | 12–18 | 7–14 | 4, 24, 30, 3 | ||||||||
A. vermicularis Wagler, 1824 | 4 | 211–254 | 23–30 | 18–26 | 18–25 | 6 | 4, 6, 65 | ||||||||||
A. xera Thomas, 1966 | 4 | 3 | 3 | 0 | 225–234 | 12–16 | 12–16 | 14–16 | 5–7 | 5, 30, 55 |
Sex determinations were performed by direct dissections. Furthermore, we made measurements of the head scales on fixed specimens, taking digital pictures using a Zeiss Axiocam microscope camera installed on a stereo microscope Carl Zeiss model stemi 2000c and the software Image-J version 1.52 (
The tree-building methods revealed Amphisbaena elbakyanae sp. nov. with robust support (BA: 0.91) as a sister taxon of a highly supported clade (BA: 0.97), comprising a specimen of A. cunhai Hoogmoed & Ávila-Pires, 1991 FJ441916 and specimens of A. mertensii Strauch, 1881 FJ441917, FJ441919, and FJ44191 (Fig.
Uncorrected p distances for the fragment of ND2 gene (763 bp) of the species of Amphisbaena expressed as percentages (averages). Values below the diagonal represent between lineage divergences. Bold values along the diagonal depict within lineage divergence.
Species | n | elb | alb | ful | ane | anu | ano | are | bah | bol | bra | cae | cam | car | cai | cui | cun | dar | has | ign | kin | kra | lee | leu | mer | mit | mun | pre | rob | sax | sil | sch | uro | ven |
A. elbakyanae sp. nov. | 1 | ― | ||||||||||||||||||||||||||||||||
A. alba | 11 | 26.2 | 7.2 | |||||||||||||||||||||||||||||||
A. fuliginosa | 5 | 28.4 | 28.1 | 7.1 | ||||||||||||||||||||||||||||||
A. anaemariae | 1 | 27.5 | 27.1 | 29.3 | ― | |||||||||||||||||||||||||||||
A. angustifrons | 1 | 28.1 | 25.7 | 29.1 | 24.8 | ― | ||||||||||||||||||||||||||||
A. anomala | 2 | 28.7 | 26.6 | 30.1 | 29.2 | 26.2 | 0.0 | |||||||||||||||||||||||||||
A. arenaria | 1 | 27.0 | 19.4 | 27.1 | 26.5 | 25.1 | 26.8 | ― | ||||||||||||||||||||||||||
A. bahiana | 2 | 30.8 | 30.0 | 30.9 | 29.9 | 29.5 | 28.6 | 30.2 | 0.2 | |||||||||||||||||||||||||
A. bolivica | 2 | 27.0 | 18.1 | 29.9 | 28.3 | 27.3 | 28.3 | 21.0 | 28.3 | 5.8 | ||||||||||||||||||||||||
A. brasiliana | 1 | 25.4 | 25.7 | 26.5 | 27.8 | 26.8 | 24.8 | 24.2 | 29.5 | 27.8 | ― | |||||||||||||||||||||||
A. caeca | 1 | 27.8 | 26.9 | 29.8 | 27.3 | 24.2 | 24.6 | 26.1 | 28.5 | 27.7 | 27.6 | ― | ||||||||||||||||||||||
A. camura | 1 | 28.7 | 19.1 | 30.1 | 29.7 | 28.7 | 27.9 | 21.8 | 29.1 | 6.8 | 27.9 | 28.7 | ― | |||||||||||||||||||||
A. carli | 1 | 23.5 | 17.7 | 27.0 | 26.6 | 22.4 | 23.9 | 12.8 | 28.8 | 18.4 | 21.8 | 22.6 | 19.5 | ― | ||||||||||||||||||||
A. cf. caiari | 2 | 29.2 | 28.6 | 29.1 | 29.8 | 27.4 | 31.9 | 28.2 | 30.7 | 27.3 | 28.1 | 28.8 | 28.1 | 25.2 | 1.7 | |||||||||||||||||||
A. cuiabana | 2 | 25.8 | 26.4 | 28.4 | 26.0 | 26.3 | 26.8 | 26.2 | 26.5 | 26.8 | 24.9 | 24.5 | 28.7 | 23.0 | 28.3 | 18.1 | ||||||||||||||||||
A. cunhai | 1 | 28.9 | 30.4 | 30.3 | 32.8 | 30.9 | 32.8 | 30.3 | 32.7 | 30.1 | 30.3 | 31.2 | 29.8 | 27.0 | 31.3 | 30.4 | ― | |||||||||||||||||
A. darwini | 1 | 28.6 | 24.0 | 29.8 | 24.5 | 18.5 | 26.4 | 26.5 | 27.8 | 27.6 | 27.8 | 23.5 | 28.6 | 23.5 | 27.6 | 24.8 | 31.6 | ― | ||||||||||||||||
A. hastata | 2 | 32.7 | 32.7 | 30.8 | 33.4 | 31.1 | 32.3 | 30.9 | 29.8 | 32.3 | 30.8 | 31.2 | 33.1 | 28.7 | 30.8 | 27.2 | 32.8 | 29.7 | 0.0 | |||||||||||||||
A. ignatiana | 2 | 26.5 | 19.4 | 29.0 | 27.8 | 27.0 | 27.9 | 16.3 | 27.6 | 21.6 | 24.2 | 27.2 | 21.8 | 15.3 | 27.5 | 26.1 | 27.5 | 27.6 | 30.5 | 0.0 | ||||||||||||||
A. kingii | 2 | 27.5 | 24.7 | 29.6 | 23.7 | 17.3 | 25.4 | 25.0 | 28.3 | 26.1 | 24.6 | 23.1 | 27.9 | 21.6 | 27.9 | 24.2 | 30.6 | 16.8 | 29.8 | 27.2 | 0.0 | |||||||||||||
A. kraoh | 1 | 25.1 | 19.8 | 28.8 | 27.0 | 25.9 | 25.4 | 14.6 | 29.1 | 22.0 | 25.4 | 25.3 | 21.7 | 13.2 | 28.7 | 25.9 | 28.3 | 25.7 | 30.5 | 19.3 | 24.6 | ― | ||||||||||||
A. leeseri | 1 | 28.7 | 27.2 | 29.4 | 27.0 | 19.2 | 25.1 | 26.4 | 29.0 | 28.0 | 26.5 | 25.3 | 29.4 | 25.2 | 28.2 | 25.6 | 33.0 | 20.6 | 30.8 | 28.4 | 18.7 | 25.9 | ― | |||||||||||
A. leucocephala | 2 | 28.2 | 18.0 | 27.8 | 28.6 | 28.0 | 26.5 | 20.6 | 29.5 | 18.9 | 26.5 | 27.0 | 19.3 | 19.3 | 27.9 | 26.3 | 31.4 | 26.9 | 31.8 | 21.4 | 25.0 | 21.4 | 28.4 | 6.1 | ||||||||||
A. mertensii | 3 | 26.1 | 26.5 | 30.2 | 30.7 | 27.3 | 28.0 | 26.9 | 29.3 | 27.1 | 27.6 | 28.4 | 27.2 | 23.6 | 29.9 | 28.0 | 25.0 | 28.0 | 32.9 | 24.6 | 27.0 | 26.8 | 29.4 | 26.4 | 11.4 | |||||||||
A. mitchelli | 1 | 27.5 | 26.9 | 31.2 | 30.3 | 27.6 | 30.0 | 29.7 | 31.2 | 26.8 | 27.2 | 28.6 | 27.9 | 25.6 | 27.3 | 27.3 | 32.0 | 27.2 | 30.3 | 26.5 | 27.5 | 27.2 | 27.6 | 26.0 | 28.0 | ― | ||||||||
A. munoai | 1 | 29.8 | 25.0 | 29.7 | 27.5 | 19.0 | 25.7 | 25.9 | 27.7 | 28.1 | 28.9 | 24.6 | 28.9 | 24.5 | 30.3 | 25.5 | 31.9 | 11.1 | 30.5 | 27.9 | 17.9 | 26.7 | 20.7 | 26.9 | 29.3 | 28.1 | ― | |||||||
A. pretrei | 2 | 26.5 | 16.4 | 27.3 | 27.5 | 28.0 | 25.9 | 19.7 | 29.4 | 19.1 | 27.1 | 25.8 | 20.2 | 17.1 | 28.9 | 27.6 | 28.3 | 26.7 | 31.2 | 19.4 | 26.4 | 18.9 | 28.3 | 16.9 | 27.0 | 27.8 | 27.2 | 0.0 | ||||||
A. roberti | 2 | 27.9 | 22.1 | 29.1 | 28.6 | 27.0 | 28.3 | 22.5 | 30.1 | 23.0 | 25.9 | 28.0 | 24.1 | 22.0 | 24.0 | 26.6 | 30.5 | 26.3 | 31.9 | 21.9 | 25.9 | 22.9 | 27.9 | 21.9 | 27.1 | 25.5 | 27.2 | 21.8 | 28.3 | |||||
A. saxosa | 2 | 25.6 | 19.2 | 27.2 | 25.7 | 22.9 | 25.0 | 14.1 | 28.1 | 20.3 | 23.4 | 22.4 | 20.7 | 8.4 | 26.5 | 24.6 | 29.0 | 25.1 | 29.2 | 16.0 | 21.8 | 13.3 | 23.7 | 20.2 | 25.1 | 27.5 | 23.9 | 18.2 | 21.6 | 0.0 | ||||
A. silvestrii | 2 | 27.6 | 25.5 | 28.3 | 19.4 | 23.7 | 27.2 | 23.8 | 27.7 | 26.5 | 27.6 | 25.8 | 26.8 | 22.0 | 27.2 | 25.3 | 31.6 | 22.7 | 28.9 | 25.1 | 24.3 | 23.8 | 24.4 | 27.9 | 28.5 | 27.8 | 23.9 | 27.9 | 26.5 | 21.6 | 0.8 | |||
A. schmidti | 3 | 27.2 | 26.8 | 29.0 | 27.6 | 26.1 | 27.2 | 25.0 | 27.2 | 26.8 | 26.4 | 23.7 | 28.1 | 22.2 | 29.7 | 24.6 | 29.8 | 25.9 | 29.8 | 25.6 | 22.9 | 24.6 | 25.3 | 25.9 | 26.7 | 27.8 | 26.1 | 26.6 | 26.3 | 22.9 | 25.1 | 0.0 | ||
A. uroxena | 2 | 30.3 | 29.0 | 32.8 | 29.4 | 28.5 | 28.5 | 29.4 | 25.0 | 29.4 | 29.3 | 28.7 | 29.5 | 26.8 | 31.5 | 27.8 | 33.1 | 27.4 | 32.9 | 27.2 | 26.9 | 27.9 | 27.9 | 28.9 | 29.9 | 31.4 | 28.3 | 28.3 | 30.1 | 27.0 | 26.6 | 27.7 | 0.5 | |
A. ventrimacularis | 6 | 27.1 | 16.1 | 27.4 | 26.9 | 26.3 | 27.2 | 17.7 | 29.8 | 18.8 | 25.2 | 27.4 | 19.9 | 17.2 | 27.2 | 24.5 | 30.5 | 25.2 | 31.6 | 16.9 | 25.0 | 19.7 | 27.0 | 18.2 | 25.2 | 26.7 | 26.6 | 18.2 | 16.3 | 18.3 | 24.6 | 24.8 | 28.3 | 0.5 |
A. xera | 1 | 29.8 | 26.3 | 29.6 | 27.5 | 25.6 | 25.6 | 25.4 | 27.0 | 28.2 | 25.6 | 19.6 | 29.4 | 23.9 | 28.2 | 25.5 | 32.3 | 25.6 | 30.9 | 25.1 | 24.6 | 26.1 | 25.3 | 26.8 | 26.8 | 28.6 | 24.2 | 28.1 | 26.8 | 22.8 | 26.1 | 23.5 | 27.9 | 25.8 |
Chresonymy: Amphisbaena sp. (ICN-TAS 700):
(Fig.
Two specimens:
Amphisbaena elbakyanae sp. nov. belong to the genus Amphisbaena Linnaeus, 1758 (sensu
Amphisbaena elbakyanae sp. nov., can be distinguished from all its congeners by the following combination of characters: (1) three supralabial scales; (2) three infralabial scales; (3) second supralabial scale longer than first and third supralabial scales, contacting first and third supralabial, temporal, ocular and prefrontal scales; (4) angulus oris lies in transverse plane passing through the posterior edges of the ocular scales and the center of the frontal scales; (5) second infralabial scale in contact with postmental scales; (6) six premaxillar teeth; (7) ten maxillar teeth; (8) one temporal scale; (9) absence of malar scale; (10) a single postgenial scale row with four segments; (11) postmalar scale rows with six to seven segments; (12) first body annulus includes one large segment on each side lying immediately posterior to inner parietal scales, abutting onto posterolateral edge of the outer parietal scales; (13) middorsal segments of second and third body annulus non-enlarged; (14) 245–257 body annuli; (15) 13–15 dorsal segments per annulus at midbody; (16) 16–18 ventral segments per annulus at midbody; (17) four precloacal pores; (18) autotomy sites located on sixth to eighth caudal annuli, (19) 20–24 caudal annuli, (20) rostral scale visible from above, (21) dorsal and ventral surfaces homogeneusly dark brown or dark brown-reddish, (22), and small body size 211–237 mm (Fig.
Comparison of the head scuttelation between the holotypes of Amphisbaena elbakyanae sp. nov. and A. gracilis. (A, C, E) Dorsal, lateral and ventral view of the head of A. elbakyanae sp. nov. (B, D, F) Dorsal, lateral and ventral view of the head of A. gracilis. (G) Lateral view of the caudal scuttelation of A. elbakyanae sp. nov. Scales: 1 = nasals, 2 = prefrontals, 3 = frontals, 4 = oculars, 5 = rostral, 6 = supralabials, 7 = posoclulars, 8 = temporals, 9 = parietals, 10 = middorsals segments of the body annulus, 11 = first, second and third body annulus, 12 = infralabials, 13 = mental, 14 = postmentals, 15 = postgenials, 16 = postmalars, 17 = precloacal annulus, 18 = cloacal annuli, 19 = postcloacal annulus, 20 = autotomus annulus, 21 = postclocal lip, 22 = precloacal lip.
(Table
(Figs
Measurements (in mm) of holotype and paratype series of Amphisbaena elbakyanae sp. nov.
Trait (mm) |
|
|
|
Sex | Male | Female | Female |
SVL | 211 | 237 | 224 |
TL | incomplete | 27 | 20 |
BD | 5.3 | 5.6 | 5.9 |
HL | 7.1 | 7.0 | 6.4 |
HW | 5.5 | 5.3 | 5.2 |
PFL | 1.9 | 2.2 | 2.5 |
PFW | 1.8 | 1.7 | 1.4 |
FL | 1.8 | 2.0 | 1.8 |
FW | 1.1 | 1.2 | 1.1 |
IPL | 1.4 | 1.5 | 1.6 |
IPW | 1.3 | 1.3 | 1.3 |
OPL | 1.2 | 1.2 | 1.5 |
OPW | 1.3 | 1.3 | 1.4 |
OL | 1.6 | 1.3 | 1.2 |
OH | 1.0 | 0.9 | 0.9 |
POL | 1.4 | 1.6 | 1.6 |
POW | 1.2 | 1.0 | 0.8 |
TEL | 1.6 | 1.3 | 1.4 |
TEH | 1.1 | 1.2 | 1.2 |
ML | 1.2 | 1.4 | 1.3 |
MW | 1.1 | 1.2 | 1.1 |
PML | 2.0 | 1.9 | 1.9 |
PMW | 1.4 | 1.4 | 1.5 |
Mental scales quadrate, smaller and narrower than rostral scale, longer than wide (MW/ML 94.8%), in broad contact with postmental and first infralabial scales; postmental scale oblong, longer than wide (PMW/PML 70.3%), visible longer than and in broad contact with mental scale, first and second infralabials and postgenial scale row; three infralabial scales, first trapezoidal, longer than wide and in broad contact with mental, postmental and second supralabial scales; second infralabial scale larger than first and third infralabial scales, broadly contacting first and third infralabial and postmalar scale rows; third infralabial scale smaller than first and second infralabial scales, in contact with second infralabial scale, postmalar scale row and in posterior contact with first body annulus; malar scales absent; postgenial scale row composed by four segments, in contact with second infralabial, postmental, and in posterior contact with postmalar row of scales; postmalar row of scales composed by seven segments (Figs
Body annuli demarcated; lateral and middorsal sulci present, beginning from 16th (left) or 18th (right) body annulus; 245 body annuli, 13 dorsal segments per annulus at midbody, 16 ventral segments per annulus at midbody; first body annulus with one enlarged middorsal segment on each side contacting with posterior edge of the inner parietals, abutting onto posterolateral edge of the outer parietal scales; middorsal segments of second and third body annulus non-enlarged (Figs
Color of the holotype in life (Fig.
Color in life of Amphisbaena elbakyanae sp. nov. (A) Holotype of A. elbakyanae sp. nov., recently euthanized (
(Fig.
We dedicate this species to the Kazakhstani scientist Alexandra Asanovna Elbakyan (Russian: Алекса́ндра Аса́новна Элбакя́н), creator of the web site Sci-Hub, for her colossal contributions for reducing the barriers in the way of science, as well as her reclamation that “everyone has the right to participate and share in scientific advancement and its benefits, freely and without economic constraints”.
The known localities of Amphisbaena elbakyanae sp. nov., are distributed in the flooded savanna ecosystem of the Orocué and Ariporo River basin, as well as in the drained savanna ecosystem of the Bita River basin in the department of Vichada (Fig.
Geographic distribution of Amphisbaena elbakyanae sp. nov. detailing the soil type where each specimen was collected. The black star represents the holotype locality. The black triangles represent the localities of the paratypes. Background map was retrieved from the Esri open database accessing the following sources: DeLorme, USDS, NPS; USGS, NOAA.
In this research, molecular and morphological evidence allowed us to confirm that Amphisbaena elbakyanae sp. nov. represents a new species of amphisbaenian from northern South America (sensu
Furthermore, both molecular and morphological evidence agreed with
This situation leaves open the question of whether such morphological similarities are due to evolutionary ancestry or could be due to convergent evolution of characters, a product of adaptation to similar habitats (
Amphisbaena elbakyanae sp. nov., described as a new species from the Orinoquia savanna ecosystem of Colombia, seems to be related to A. cunhai and A. mertensii from central-southern Brazil. This species of Amphisbaena is one of the several still-unrecognized evolutionary lineages of worm lizards that are deposed in Colombian museum shelves waiting to be described. We think that the lack of worm lizard studies in Colombia is derived from three main factors. First, insufficient funding for field and museum research; second, large areas still lack intensive sampling and third, there are few investigators searching for worm lizards and few experts and trained personnel capable of describing species (
(1) | Snout prognathous; rostral scale large, elongate and coniform in broad contact with prefrontal scales, separating nasal scales | (Genus Mesobaena) Mesobaena huebneri |
— | Snout non-prognathous; rostral scale short, subtriangular, ventrally expanded and posteriorly without contact with prefrontal scales; nasal scales in broad contact (Genus Amphisbaena) | 2 |
(2) | Robust body; 30–42 dorsal segments per annulus at midbody, 35–46 ventral segments per annulus at midbody, caudal autotomy absent | Amphisbaena alba |
— | Robust or thin body, less than 29 dorsal and ventral segments per annulus at midbody, caudal autotomy present | 3 |
(3) | Robust body; 19–28 dorsal segments per annulus at midbody, 21–28 ventral segments per annulus at midbody; 6–9 precloacal pores, postmalar scale row composed by 10–14 segments | Amphisbaena fuliginosa |
— | Thin body, four precloacal pores, postmalar scale row composed by 6–9 segments | 4 |
(4) | 245–257 body annuli, 13–15 dorsal segments per annulus at midbody, three supralabial and infralabial scales | Amphisbaena elbakyanae sp. nov. |
— | Less than 244 body annuli | 5 |
(5) | 230–235 body annuli, 14–16 dorsal segments per annulus at midbody, three supralabial and infralabial scales | Amphisbaena medemi |
— | 213–222 body annuli, 16–18 dorsal segments per annulus at midbody, four supralabial and infralabial scales | Amphisbaena spurrelli |
We thank John Jairo Ospina-Sarria, Marvin Anganoy-Criollo and Juan Carlos Gómez (Chigüi) for their help and support during the fieldwork. We give special thanks to Esperanza Parales, who hosted us in her farm (El Porvenir) during the fieldwork. We thank Rebeca Morantes-Zamora for her help with the distribution map. We thank Beiker Castañeda, Brayan Marín, Carlos Lasso, as well as Fundación Omacha for provide us a photograph of specimen in life of Amphisbaena elbakyanae from Bojonawi Natural Reserve.We also thank the reserchers of the Biodiversity and Conservation Genetics Group of the Genetics Institute, National University of Colombia for their assistance in the DNA lab. We thank Martha Calderón-Espinosa and John D. Lynch (ICN), Julio Mario Hoyos (