Corresponding author: V. Deepak ( veerappandeepak@gmail.com ) Academic editor: Uwe Fritz
© 2021 V. Deepak, Samuel Lalronunga, Esther Lalhmingliani, Abhijit Das, Surya Narayanan, Indraneil Das, David J. Gower.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Deepak V, Lalronunga S, Lalhmingliani E, Das A, Narayanan S, Das I, Gower DJ (2021) Phylogenetic relationships of xenodermid snakes (Squamata: Serpentes: Xenodermidae), with the description of a new genus. Vertebrate Zoology 71: 747-762. https://doi.org/10.3897/vz.71.e75967
|
Xenodermidae is a generally poorly known lineage of caenophidian snakes found in South, East and Southeast Asia. We report molecular phylogenetic analyses for a multilocus data set comprising all five currently recognised genera and including new mitochondrial and nuclear gene sequence data for the recently described Stoliczkia vanhnuailianai. Our phylogenetic results provide very strong support for the non-monophyly of Stoliczkia, as presently constituted, with S. borneensis being more closely related to Xenodermus than to the Northeast Indian S. vanhnuailianai. Based on phylogenetic relationships and morphological distinctiveness, we transfer Stoliczkia borneensis to a new monotypic genus endemic to Borneo, Paraxenodermus gen. nov. We also present new morphological data for P. borneensis.
Borneo, endemic, morphology, Paraxenodermus gen. nov., phylogeny, taxonomy
The caenophidian snake family Xenodermidae Gray, 1849 includes five currently recognised genera, namely Achalinus Peters, 1869, Fimbrios Smith, 1921, Parafimbrios Teynié, David, Lottier, Le, Vidal & Nguyen, 2015, Xenodermus Reinhardt, 1836 and Stoliczkia Jerdon, 1870. Achalinus is the most speciose of these genera, with 19 currently recognised species, 10 of which were described in the past five years (
Left panel: Multilocus ML phylogeny showing relationships of xenodermid snakes. Numbers at internal branches are: ML bootstrap support / BI posterior probability support. Right panel: map depicting distribution of all currently recognised xenodermid genera. Source: GBIF,
We collected a liver sample from the holotype (and only reported specimen of) Stoliczkia vanhnuailianai, preserved it in 99% ethanol and stored in –20°C freezer. We extracted genomic DNA using the DNeasy (Qiagen) blood and tissue kit and amplified partial sequences of four mitochondrial (mt) and two nuclear (nu) genes. The mt genes are 16S rRNA (16S, 528 base pairs [bp]), 12S rRNA (12S, 317 bp), cytochrome b (cytb, 654 bp) and cytochrome oxidase subunit 1 (co1, 710 bp); and the nu markers are oocyte maturation factor (cmos, 449 bp) and neurotrophin-3 (nt3, 507 bp) . PCR conditions followed previously reported protocols (16S, primers 16Sar-L and 16Sbr-H:
We aligned the new sequences for Stoliczkia vanhnuailianai with eight other xenodermids, and an outgroup, the non-xenodermid caenophidian Acrochordus granulatus. We checked for stop codons in unexpected regions by translating nucleotide alignments to amino acids for protein-coding genes (cytb, co1, cmos, nt3) using MEGA 7 (
First, we built individual gene trees using Maximum Likelihood (ML). Based on availability of sequence data, we selected one species per xenodermid genus (though included both S. borneensis and S. vanhnuailianai for Stoliczkia) and the outgroup. We then aligned and concatenated the six gene sequences into a single dataset (3122 basepairs in length) with ten tips, including the outgroup (Table
GenBank accession numbers and voucher numbers for the sequences used in this study. Sequences used in the ML and BI concatenated phylogeny are indicated with an asterisk. Accession codes for sequences newly generated in this study are in bold text.
Species | Family | 12S | 16S | cytb | cmos | nt3 | co1 |
---|---|---|---|---|---|---|---|
Acrochordus granulatus* | Acrochordidae | AF544738 | AF544786 | AF217841 | HM234057 | FJ434082 | MH273113 |
Acrochordus javanicus | Acrochordidae | KX694587 | AF512745 | KX694897 | HM234058 | KX694991 | LC533890 |
Agkistrodon contortrix | Viperidae (Crotalinae) | AF156587 | AF156566 | EU483383 | — | — | MN135583 |
Ahaetulla pulverulenta | Colubridae (Ahaetuliinae) | KC347304 | KC347339 | KC347454 | KC347378 | — | — |
Anilius scytale | Aniliidae | AF544753 | FJ755180 | U69738 | AF544722 | FJ434066 | — |
Anomochilus leonardi | Cylindrophiidae + Anomochiliidae | AY953430 | AY953431 | — | — | — | — |
Aparallactus capensis | Atractaspididae (Aparallactinae) | FJ404129 | AY188045 | AY188006 | AY187967 | — | — |
Aplopeltura boa | Pareidae (Pareinae) | AF544761 | AF544787 | JF827673 | JF827696 | FJ434085 | — |
Asthenodipsas laevis | Pareidae (Pareinae) | — | KX660197 | KX660469 | KX660336 | — | — |
Azemiops feae | Viperidae (Azemiopinae) | KX694579 | AF057234 | AY352747 | AF544695 | KX694977 | KP403570 |
Bitis nasicornis | Viperidae (Viperinae) | DQ305411 | AY188048 | DQ305457 | AY187970 | — | MH273549 |
Boa constrictor | Boidae | AF512744 | AB177354 | AB177354 | AF544676 | — | MH140079 |
Boaedon fuliginosus | Lamprophiidae (Lamprophiinae) | FJ404169 | AY188079 | AF471060 | FJ404270 | FJ434094 | AY122663 |
Bothrolycus ater | Lamprophiidae (Lamprophiinae) | FJ404144 | AY611859 | AY612041 | FJ404347 | — | MH273562 |
Buhoma depressiceps | Lamprophiidae incertae sedis | FJ404147 | AY611860 | AY612042 | AY611951 | — | — |
Buhoma procterae | Lamprophiidae incertae sedis | FJ404148 | AY611818 | AY612001 | AY611910 | — | — |
Bungarus fasciatus | Elapidae | EU547135 | EU579523 | EU579523 | AY058924 | KX694998 | KY769767 |
Calabaria reinhardtii | Calabariidae | KF576842 | Z46494 | AY099985 | AF544682 | — | MH273568 |
Calamaria pavimentata | Colubridae (Calamariinae) | MH445959 | KX694624 | AF471081 | AF471103 | KX694999 | MK064858 |
Candoia carinata | Candoiidae | AF544741 | EU419850 | AY099984 | AY099961 | FJ434077 | — |
Cantoria violacea | Homalopsidae | EF395873 | KX694627 | EF395897 | — | KX695001 | — |
Casarea dussumieri | Bolyeridae | AF544754 | AF544827 | U69755 | AF544731 | FJ434069 | — |
Charina bottae | Charinidae (Charininae) | AF544743 | AF544816 | AY099986 | AY099971 | FJ434079 | — |
Chilabothrus striatus | Boidae | — | — | KC329933 | KC329991 | DQ465554 | — |
Contia tenuis | Colubridae (Dipsadinae) | AY577021 | AY577030 | GU112384 | AF471134 | — | KU986070 |
Corallus annulatus | Boidae | JX244286 | — | KC750012 | KC750007 | — | MH140107 |
Cylindrophis ruffus | Cylindrophiidae+Anomochilidae | MK065683 | AB179619 | AB179619 | AF471133 | MK064906 | |
Daboia russelii | Viperidae (Viperinae) | DQ305413 | EU913478 | EU913478 | AF471156 | — | GQ225661 |
Ditypophis vivax | Lamprophiidae | FJ404150 | AY188052 | AY188013 | — | — | KU567322 |
Epicrates cenchria | Boidae | AF368059 | — | HQ399501 | KC330008 | JX576186 | — |
Eryx colubrinus | Erycidae | AF544747 | AF544819 | U69811 | AF544716 | DQ465569 | — |
Eryx conicus | Erycidae | GQ225680 | AF512743 | GQ225658 | — | — | — |
Eunectes notaeus | Boidae | AF368057 | AM236347 | HQ399499 | HQ399536 | — | — |
Gerrhopilus mirus | Gerrhopilidae | AM236345 | AM236345 | AM236345 | GU902566 | AM236345 | |
Grayia ornata | Colubridae (Grayiinae) | AF158434 | AY611866 | AY612048 | AF544684 | KX695019 | MH274058 |
Hologerrhum philippinum | Lamprophiidae (Cyclocorinae) | — | MG458758 | MG458766 | — | — | |
Homoroselaps lacteus | Lamprophiidae (Atractaspidinae) | KX694590 | AY611809 | AY611992 | AY611901 | KX695021 | — |
Liasis mackloti | Pythonidae | EF545024 | EF545051 | U69839 | AF544726 | FJ434075 | — |
Liopholidophis sexlineatus | Lamprophiidae (Pseudoxyrhophiinae) | FJ404174 | AY188063 | DQ979985 | AY187985 | — | JQ909421 |
Liotyphlops albirostris | Anomalepididae | AF366693 | AF366762 | AF544672 | AF544727 | MH140260 | |
Loxocemus bicolor | Loxocemidae | AF512737 | AF544828 | AY099993 | AY444035 | FJ434072 | — |
Micrelaps bicoloratus | Lamprophiidae (Aparallactinae) | — | DQ486349 | DQ486173 | — | — | |
Mimophis mahfalensis | Lamprophiidae (Psammophiinae) | KX694543 | AY188070 | DQ486461 | AY187992 | KX695030 | JQ909482 |
Naja (Afronaja) mossambica | Elapidae | GQ359658 | AY611813 | AY611996 | AY611905 | — | — |
Naja (Boulengerina) melanoleuca | Elapidae | U96801 | AY611812 | AY611995 | AY611904 | — | MH274485 |
Oxyrhabdium leporinum | Lamprophiidae (Cyclocorinae) | — | — | AF471029 | DQ112081 | — | — |
Oxyuranus scutellatus | Elapidae | EU547100 | EU547149 | EU547051 | EU546916 | — | — |
Pareas carinatus | Pareidae (Pareinae) | AF544773 | AF544802 | JF827677 | JF827702 | FJ434086 | — |
Prosymna janii | Lamprophiidae (Prosymninae) | FJ404193 | FJ404222 | FJ404319 | FJ404293 | — | — |
Pseudaspis cana | Lamprophiidae (Pseudaspidinae) | FJ404187 | AY611898 | AY612080 | DQ486167 | — | — |
Pseudoxenodon karlschmidti | Colubridae (Pseudoxenodontinae) | KX694578 | JF697330 | AF471080 | AF471102 | KX695042 | MK064781 |
Python bivittatus | Pythonidae | KF010492 | KF010492 | JX401131 | AF435016 | KF010492 | |
Rhinophis drummondhayi | Uropeltidae | AY700997 | AY701028 | AF544673 | AF544719 | FJ434071 | — |
Sanzinia madagascariensis | Sanziniidae | EU403571 | AY336066 | U69866 | EU403580 | — | MH274606 |
Tropidophis feicki | Tropidophiidae | AF512733 | AF512733 | KF811124 | KF811110 | — | — |
Ungaliophis continentalis | Charinidae (Ungaliophiinae) | AF512741 | AF544833 | U69870 | AF544724 | FJ434081 | — |
Xenopeltis unicolor | Xenopeltidae | AF512735 | AB179620 | AB179620 | AF544689 | FJ434073 | MK064839 |
Xenophidion schaeferi | Xenophidiidae | — | AY574279 | MK070320 | MK070322 | — | |
Xylophis perroteti | Pareidae (Xylophiinae) | — | MK340908 | MN970042 | MK344193 | — | — |
Achalinus rufescens* | Xenodermidae | KX694570 | KX694613 | KX694895 | — | KX694990 | |
Achalinus spinalis* | Xenodermidae | MK065581 | MK194153 | MK201476 | — | — | MK064822 |
Achalinus zugorum* | Xenodermidae | MT503100 | MT513238 | — | — | MT502775 | |
Fimbrios klossi* | Xenodermidae | — | KX694894 | — | — | KP410745 | |
Parafimbrios lao* | Xenodermidae | — | — | — | — | KP410746 | |
Parafimbrios vietnamensis* | Xenodermidae | — | — | — | — | MH884515 | |
“Stoliczkia” borneensis* | Xenodermidae | AF544779 | AF544808 | — | AF544721 | FJ434083 | |
Stoliczkia vanhnuailianai* | Xenodermidae | OL352693 | OL352694 | OL422473 | OL422475 | OL422474 | OL422476 |
Xenodermus javanicus* | Xenodermidae | AF544781 | AF544810 | AF544810 | AF544711 | — | — |
We used PartitionFinder2 (
Partitions and models of sequence evolution used in the ML and BI phylogenetic analyses for the concatenated dataset. 1st, 2nd and 3rd refer to the codon position.
Partitions | Sites | BI | ML |
1 | co1 1st, nt31st | K80+I | GTR+G |
2 | cytb 2nd, co12nd | HKY+I | GTR+G |
3 | cytb 3rd, co13rd | HKY+G | GTR+G |
4 | 12S, 16S, cytb 1st | GTR+G | GTR+G |
5 | cmos 1st, cmos2nd, nt31st, nt32nd | K80+I | GTR+G |
6 | cmos 3rd | HKY | GTR+G |
We aligned a larger dataset with 68 tips including two scolecophidians (Gerrhopilus mirus and Liotyphlops albirostris) and representatives of all subfamilies of Alethinophidia, including nine xenodermids (sampling all five currently recognised genera). We aligned this dataset separately using the same methods outlined above (alignments available at: https://doi.org/10.5519/gbzyjuli). We applied seven fossil calibrations (Table
Parameter values for fossil calibrations used in the BEAST divergence dating analysis. Ages in Ma. All maximum ages soft, except hard maximum for calibration 6.
Calibration | Node calibrations | Offset | Maximum age | Mean | Standard deviation |
1 | Oldest divergence within crown Alethinophidia | 93.9 | 100.5 | 1.5 | 1.25 |
2 | Oldest divergence between non-xenodermid colubroids and their closest living relative (Xenodermidae) | 50.5 | 72.1 | 6.1 | 1.25 |
3 | Divergence between Boinae and its sister taxon (Erycinae + Candoiinae) | 58 | 64 | 1.8 | 1.25 |
4 | Divergence between Corallus and (Chilabothrus + (Epicrates + Eunectes)) | 50.2 | 64 | 4 | 1.25 |
5 | Divergence between Viperinae and Crotalinae | 20 | 23.8 | 1 | 1.25 |
6 | Divergence between Acrochordus javanicus and (A. ararfurae + A. granulatus) | 18.1 | 23.1 | 1.5 | 1.25 |
7 | Oldest divergence between Naja (Afronaja) and Naja (Boulengerina) | 17 | 20 | 1 | 1.25 |
We provide here morphological and meristic data for two specimens of Stoliczkia borneensis (BMNH 1946.1.15.58 and
The single-gene ML trees are shown in Fig.
Previously, extensive data were available for only a single vouchered specimen (the holotype, BMNH 1946.1.15.58) of Stoliczkia borneensis (
Morphometric (in mm) and meristic data for Paraxenodermus borneensis. Data for the holotype (*) from
Voucher Number |
|
BMNH 1946.1.15.58* | Unspecified specimens |
Sex | male | male | |
Snout-vent length | 481 | 541 | |
Tail length (Ta) | 232 | 248 | |
Total length (TL) | 713 | 789 | |
TaL / TL | 0.33 | 0.31 | |
Horizontal eye diameter | 2.7 | 2.8 | |
Head length | 9.6 | 17.9 | |
Head width | 8.0 | 10.8 | |
Head height | 5.2 | 5.5 | |
Dorsal scale rows at one head length behind head |
31 | 31 | |
Dorsal scale rows at midbody | 31 | 32 | 31–35 |
Dorsal scale rows at one head length before vent | 25 | 25 | |
Ventrals | 206 | 208 | 205–210 (“females only”) |
Subcaudals | 128 | 123 | 117–124 |
Anal shields | 1 | 1 | |
Supralabials | 10,10 | 10,- | 10 or 11 |
Supralabials touching eye | 0 | 0 | |
Infralabials | 14,13 | 14,- | |
Infralabials touching anterior genials | 1–2 | 1–3 | |
Suboculars | 3,3 | 3,3 | |
Loreals | 1,1 (+ 2 very small scales on both sides close to nasals) | 1,1 (+ 2 very small scales on both sides close to nasals) | |
Preoculars | 2,2 | 3,3 | |
Supraoculars | 3,3 | 2,2 | |
Postoculars | 4,4 | 2,4 | |
Anterior temporals | 0,0 | 0,0 |
Stoliczkaia — Boulenger, 1890
Stolickaia — Palacky, 1898
Stolickaja — Palacky, 1898
Estoliczkaia — Briceño-Rossi, 1934
Stoliczkaia — Smith, 1943
Stolzickia — Taub, 1967
Stoliczkai — Murthy and Pillai in Majupuria, 1986
This genus can be diagnosed based on the combination of the following features: (1) maxillary teeth small and subequal, (2) head very distinct from (much wider than) ‘neck’, with large shields on dorsal aspect, (3) posterior one-third of the head and posterior temporal region covered with small scales like those of the anterior end of the body, (4) 3 small scales between parietal and supralabial shields immediately behind eye (5) 8–9 supralabials, (6) nostril in a large concave nasal, (7) body slender and somewhat laterally compressed, (8) ventrals large, and (9) dark dorsum and pale venter meet along a regular straight line ventrolaterally and subcaudals partially or completely darker than venter.
Line drawings of Stoliczkia khasiensis (A, B), Stoliczkia vanhnuailianai (C, D) and Paraxenodermus borneensis (E, F) based on
This genus is restricted to Northeast India (Fig.
The genus is named after the Moravian-born Ferdinand Stoliczka (1838–1874). A geologist-natural historian, he was appointed as a palaeontologist with the Geological Survey of India in 1863. Stoliczka collected vertebrates and molluscs from northern India, Andaman and Nicobar Islands, Myanmar and the Malay Peninsula. He served as the official Naturalist with the Second Mission to Yarkand, in central Asia. A biography and a list of published works and reports by Stoliczka can be found in
Paraxenodermus borneensis (Boulenger, 1899).
Mount Kinabalu, North Borneo (4,200 ft / 1,280 m); the holotype is deposited in the Natural History Museum, London as BMNH 1946.1.15.58; collected by Richard Hanitsch in March, 1899.
Content—Paraxenodermus borneensis
Stoliczkaia borneensis
Stoliczkaia borneensis
—
Stoliczkaia borneensis — de Haas 1950: 530
Stoliczkaia borneensis
—
Stoliczkaia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis — Das 2012 :153
Stoliczkia borneensis — Das 2018: 151, 169
Stoliczkia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis
—
Stoliczkia borneensis
—
This genus can be diagnosed based on the combination of the following features: (1) maxillary teeth small and subequal, (2) head very distinct from (much wider than) ‘neck’, with large shields on dorsal aspect, (3) posterior one-third of the head and posterior temporal region covered with small scales like those of the anterior of the body, (4) numerous small scales between parietal and supralabial shields immediately behind eye, (5) a row of 4–6 small scales between the frontal and prefrontal shields, (6) 10–11 supralabials, (7) nostril in a large concave nasal, (8) body slender and somewhat laterally compressed, (9) ventrals large, and (10) dorsum with numerous dorsolateral and middorsal pale blotches, venter pale with brown patches and subcaudals dark grey.
Morphologically Paraxenodermus borneensis differs from all other xenodermid snakes by a combination of the following characters: presence of head shields (absent in Xenodermus javanicus, other than at snout tip), approximately one-third of the head covered with small scales similar to dorsal scales on the anterior of the body (versus head scales distinct from body scales in Achalinus, Fimbrios and Parafimbrios), head much wider than ‘neck’ (versus head indistinct from neck in Fimbrios, Parafimbrios and Achalinus) and presence of a row of small scales between frontal and prefrontal scales (absent in Stoliczkia).
The new genus is restricted to the island of Borneo and so far, reported from the Kinabalu Massif (
The two examined specimens of Paraxenodermus borneensis, the holotype BMNH 1946.1.15.58 and
The generic name Paraxenodermus is composed of the modern Latin generic name Xenodermus and the Latin adjective par (paris), meaning, among other possibilities, “similar to”.
Taken at face value, our phylogenetic results and the distribution of xenodermid genera (Fig.
Establishment of a new genus for S. borneensis and a new understanding of phylogenetic relationships removes the exceptional geographic disjunction presented by the previous concept of Stoliczkia. These results also strengthen evidence for endemic radiations within both Borneo (e.g.
BEAST chronogram showing estimated divergence times for xenodermid snakes inferred from 68 tips for a concatenated mt and nu dataset. Numbers at internal branches indicate mean divergence ages, with blue bars showing 95% highest posterior density intervals. See Appendix
We thank K. Lalhmangaiha and Isaac Zosangliana for their support in the field. Specimen of S. vanhnuailianai was collected under the research and collection permission (A.38011/5/2011-CWLW/338) issued by the Department of Environment, Forest and Climate Change, Government of Mizoram. AD’s research is supported by SERB-DST (CRG/2018/000790) and Director, Wildlife Institute of India. Special thanks are due to Malsawmdawngliana for research assistance. Sabah field work by I. Das was supported by research grant
Partitions and models of sequence evolution used in the BEAST analyses for the 68 tips dataset. 1st, 2nd and 3rd refer to the codon position.
Partitions | Sites | model |
1 | 12S | GTR+G |
2 | 16S, cytb 1st | GTR+I+G |
3 | co1 1st, cytb2nd | SYM+I+G |
4 | cytb 3rd | GTR+I+G |
5 | co1 2nd | HKY+G |
6 | co1 3rd | GTR+I+G |
7 | cmos 1st, cmos2nd | K80+G |
8 | cmos 3rd | HKY+G |
9 | nt3 1st,nt32nd | SYM+G |
10 | nt3 3rd | HKY+G |
Specimens examined and/or photographed
Achalinus meridianus (holotype) BMNH 1946.1.12.31
Achalinus formosanus (holotype) BMNH 1946.1.7.78
Fimbrios klossi (syntype) BMNH 1946.1.15.87
Xenodermus javanicus (holotype) BMNH 1946.1.15.90
Stoliczkia khasiensis (holotype) BMNH 1946.1.15.67
Stoliczkia khasiensis
Stoliczkia borneensis (holotype) BMNH 1946.1.15.58
Stoliczkia borneensis
Stoliczkia vanhnuailianai (holotype) BNHS 3656