Research Article |
Corresponding author: George Sangster ( g.sangster@planet.nl ) Academic editor: Martin Päckert
© 2022 George Sangster.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Sangster G (2022) The taxonomic status of Palearctic and Nearctic populations of northern goshawk Accipiter gentilis (Aves, Accipitridae): New evidence from vocalisations. Vertebrate Zoology 72: 445-456. https://doi.org/10.3897/vz.72.e85419
|
The taxonomic status of the North American and Eurasian populations of northern goshawk A. gentilis has been called into question by recent molecular studies, indicating the need for additional taxonomic study. Vocalisations have long played an important role in diagnosing potentially reproductively isolated groups of birds. The chattering-type call of A. gentilis plays a role in advertisement and pair-contact, making this a suitable basis for taxonomic study of vocalisations. The data set consisted of recordings of the calls of 75 individuals of the Eurasian gentilis-group of A. gentilis, 37 of the North American atricapillus-group of A. gentilis and, for comparison, seven of Henst’s goshawk A. henstii. The three groups showed non-overlapping variation in the duration of call-notes and also showed several other highly significant differences. Discriminant Function Analysis resulted in 100% correct classification of recordings into the three groups. It is here argued that the new bioacoustic data, in combination with previous evidence of morphological, mitochondrial DNA and genomic DNA differences between Eurasian and North American A. gentilis, suggests that two species are best recognised: northern goshawk A. gentilis and American goshawk A. atricapillus. A. gentilis / A. atricapillus add to a growing list of Holarctic temperate zone taxa that have recently been recognised as separate species based on a deep phylogeographic split between Eurasian and North American populations in combination with differences in other characters. This is the first quantitative taxonomic study of vocalisations in Accipitridae.
Accipiter gentilis, integrative taxonomy, species limits, systematics, vocalisations
Many temperate zone bird species have a Holarctic distribution. Recently, the importance of the Beringia barrier in the diversification of the Holarctic fauna has been demonstrated by phylogeographic analysis of mitochondrial DNA and in some cases nuclear DNA (
Northern goshawk Accipiter gentilis has a Holarctic distribution and is widely found in both coniferous and deciduous forests. There is considerable variation in plumage, which has led to the recognition of seven subspecies in the Old World (A. g. gentilis, A. g. buteoides, A. g. albidus, A. g. schvedowi, A. g. fujiyamae, A. g. marginatus, A. g. arrigonii) and three subspecies in North America (A. g. atricapillus, A. g. laingi, A. g. apache) (
Recently,
Vocalisations have not yet been used in the species-level taxonomy of Accipitridae but may be informative for two major reasons (
This study aims to test whether the phylogenetically distinct atricapillus-group and gentilis-group also differ in vocalisations. The ‘chattering-type’ calls of the atricapillus-group are compared with those of the gentilis-group using quantitative methods. For comparison, recordings of another member of the [A. gentilis] superspecies, A. henstii, are included.
In this study, species are viewed as population lineages whose boundaries our species-level concepts (species taxa) are intended to align with, through an iterative process (
Recordings were obtained from the Xeno-Canto (http://www.xeno-canto.org) data base and the bird sound collections of the Macaulay Library at the Cornell Lab of Ornithology (https://www.macaulaylibrary.org) and the Florida Museum of Natural History (https://www.floridamuseum.ufl.edu/bird-sounds). The data set was supplemented by published recordings (
In statistical analysis, the recordings of the Palearctic gentilis-group, which comprise multiple subspecies, were treated as a single operational taxonomic unit (OTU) because there were no major subdivisions in a mitochondrial Control Region phylogeny (
Seven variables were defined on the basis of sonagrams. The following measurements were recorded: (1) call duration, (2) number of notes, (3) note rate (notes per second), (4) duration of the median note, (5) maximum frequency of the second harmonic of the median note, (6) minimum frequency of the second harmonic of the median note, and (7) frequency range of the median note. All measurements were made using Raven Pro 1.5 (
Canonical discriminant function analysis (DFA) was applied to the acoustic variables of individuals to test whether the individuals could be correctly assigned to the three groups. DFA generates a set of criteria to assign individuals to groups that are defined prior to the analysis. Prior to DFA analysis, a tolerance test was conducted to assess the independence of each variable. Variables that fail the tolerance test, i.e. which are an almost linear combination of other variables, were excluded from the analyses. Two DFAs were performed: (i) a ‘descriptive’ DFA, in which the observations used to develop the criteria are then subjected to these criteria; (ii) a ‘predictive’ DFA, which uses a jackknife procedure to obtain a more accurate test of the predictive performance of the DFA. In the jackknife procedure, the DFA is recalculated using the combination of variables of the initial DFA with one individual removed from the data set. The criteria are then used to classify the removed individual. This process was repeated for all individuals of the data set.
The effect size, expressed as Cohen’s d, was calculated to show the strength of the acoustic differences between taxa. For interpretation of effect size data, we used the classification of Cohen (1992), which was updated and expanded by
Most variables passed the tolerance test, except frequency range of the median note which was excluded from the test. The descriptive DFA was highly significant (Wilks’ lambda = 0.056; Chi Square12 = 327.7; P<0.001). The variables most important in the discrimination were duration of the median note, song duration and number of notes (Table
Standardized canonical discriminant function coefficients examining trends in variance of six acoustic variables1 measured for calls of the A. g. gentilis-group, A. g. atricapillus-group and A. henstii. Eigenvalues and percentage of variance accounted for by DF1 and DF2 are given at the bottom of the table.
Variable1 | DF1 | DF2 |
Call duration | 0.588 | -2.328 |
Number of notes | -0.481 | 3.018 |
Note rate | 0.134 | -1.142 |
Duration median note | 0.956 | 0.152 |
Max. freq median note | -0.153 | -0.251 |
Min. freq. median note | 0.221 | 0.816 |
Eigenvalue | 11.311 | 0.485 |
Variance explained | 96.1% | 3.9% |
1 The variable ‘Frequency range of the median note’ was excluded because it failed the tolerance test. |
Call characteristics of the three groups are given in Table
The effect size of the differences between the three groups is given in Table
Descriptive statistics of seven variables measured for calls of two groups of A. gentilis and A. henstii (mean ± SD, range). The right three columns present significance levels of ANOVA or Mann Whitney U-tests, the effect size (expressed as Cohen’s d) and the interpretation of effect size by Cohen (1988) and
Variable | gentilis-group (n=75) | atricapillus-group (n=37) | A. henstii (n=7) | gentilis-group vs. atricapillus-group Significance Cohen’s d (interpretation) | gentilis-group vs. A. henstii Significance Cohen’s d (interpretation) | atricapillus-group vs. A. henstii Significance Cohen’s d (interpretation) |
Call duration | 4.320±1.710 (1.285–8.908) | 7.294±2.392 (2.219–15.567) | 8.101±1.367 (6.339–10.332) | P<0.001 b 1.53 (very large) c | P<0.001 b 2.27 (huge) d | n.s. a 0.36 (small) c |
Number of notes | 22.9±9.4 (6.0–47.0) | 28.9±10.6 (11.0–67.0) | 15.6±3.3 (10.0–19.0) | P<0.01 b,* 0.61 (medium) c | P<0.05 b,* 0.81 (large) c | P<0.001 b 1.38 (very large) c |
Note rate | 5.32±0.91 (3.59–8.03) | 3.97±0.48 (2.78–4.96) | 1.92±0.28 (1.52–2.32) | P<0.001 b 1.70 (very large) c | P<0.001 b 3.90 (huge) d | P<0.001 b 4.61 (huge) d |
Duration median note | 0.046±0.009 (0.021–0.069) | 0.116±0.018 (0.092–0.158) | 0.238±0.043 (0.196–0.312) | P<0.001 b 5.49 (huge) d | P<0.001 b 13.33 (huge) d | P<0.001 b 5.32 (huge) d |
Max. freq median note | 3060±317 (2581–4191) | 2899±294 (2357–3520) | 2281±487 (1763–3022) | P<0.05 a,* 0.52 (medium) c | P<0.001 b 2.37 (huge) d | P<0.005 b 1.92 (very large) c |
Min. freq. median note | 1945±250 (1484–2748) | 1960±231 (1355–2468) | 1323±347 (837–1776) | n.s. a 0.06 (negligible) | P<0.001 b 2.43 (huge) d | P<0.001 b 2.60 (huge) d |
Freq. range median note | 1115±240 (579–1716) | 939±281 (486–1603) | 958±180 (709–1246) | P<0.001 b 0.70 (medium) c | n.s. a 0.67 (medium) c | n.s. a 0.07 (negligible) |
a = ANOVA; b = MW-U test; c = sensu Cohen (1988); d = sensu |
The differences between the three groups are visible on sonagrams (Fig.
The results of this study show that recordings of the gentilis-group differ consistently from both the atricapillus-group and A. henstii and can be classified correctly at a very high proportion in Discriminant Function Analysis. The three groups show significant differences in several variables and there are ‘very large’ to ‘huge’ differences in effect size between the groups. The lack of evidence for vocal learning in Accipitriformes implies that vocal differences are innate and likely have a genetic basis. The population-level differences in vocalisations between the three groups suggest that these groups have been subjected to long periods of genetic isolation, and may represent full species. Three other lines of evidence provide further evidence of a major split between the gentilis-group and atricapillus-group.
First, there are multiple differences in the adult plumages of goshawks of the gentilis-group and the atricapillus-group (Fig.
A Accipiter atricapillus apache Arizona, USA, James Wittke/iNaturalist. Note the indistinctly barred underparts, the black crown and ear-coverts which are much darker than the pure grey wings, and the deep orange eye. B Accipiter gentilis gentilis Flatanger, Norway, Markus Varesvuo/Agami. Note the distinctly barred underparts, dark grey crown and ear-coverts which are barely darker than the brownish-grey upperparts and wings, and the orange-yellow eye.
Second, mitochondrial DNA sequences of the gentilis-group and the atricapillus-group form reciprocally monophyletic groups and show evidence (albeit only moderately supported) of a non-sister relationship (
Third, a comprehensive set of genomic SNP data show that North American and Eurasian A. gentilis represent two major groups and exhibit a pattern congruent with that found in mitochondrial DNA (
Strong and congruent differences in bioacoustic, morphological, mitochondrial DNA, and nuclear DNA data leave little doubt that the divergence between the atricapillus-group and the gentilis-group is real. Taken together, these four lines of evidence suggest that A. gentilis consists of two major groups which are best treated as two species:
Included taxa: A. g. gentilis (Linnaeus, 1758), A. g. buteoides (Menzbier, 1882), A. g. albidus (Menzbier, 1882), A. g. schvedowi (Menzbier, 1882), A. g. fujiyamae (Swann & Hartert, 1923), A. g. marginatus (Piller and Mitterpacher, 1783), and A. g. arrigonii (O. Kleinschmidt, 1903). Morphological variation within A. gentilis is clinal (
Included taxa: A. a. atricapillus (A. Wilson, 1812), A. a. laingi (Taverner, 1940) and A. a. apache van Rossem, 1938. A. a. laingi occurs from coastal south east Alaska south to Haida Gwaii and Vancouver Island, British Columbia (
Treatment of A. atricapillus as a species mirrors that of several other North American taxa that were recently separated from their Eurasian counterparts and upgraded to species rank, including Larus brachyrhynchus (
Vocalisations have long played an important role in diagnosing potentially reproductively isolated groups of birds (
A drawback of the present study is that recordings of only three of the seven Palearctic subspecies could be included. However, it is doubtful that this has biased the results of the study, based on two mitigating factors. First, there were no phylogeographic breaks among the Palearctic taxa in the mitochondrial study by
The author is very grateful to Bill Clark for his valuable comments on the manuscript, and to the recordists (listed in Appendix
Taxon | Country | Recordist | Source |
---|---|---|---|
A. g. gentilis | Norway | E. A. Ryberg | XC405652 |
A. g. gentilis | Norway | S. Wahlstrom | Wahlstrom (1995) |
A. g. gentilis | Sweden | P. Åberg | XC27024 |
A. g. gentilis | Sweden | P. Åberg | XC196982 |
A. g. gentilis | Sweden | T. Sirotkin | XC282488 |
A. g. gentilis | Sweden | P. Åberg | XC347575 |
A. g. gentilis | Sweden | L. Arvidsson | XC519963 |
A. g. gentilis | Sweden | L. Edenius | XC484611 |
A. g. gentilis | Sweden | L. Edenius | XC646584 |
A. g. gentilis | Sweden | L. Edenius | XC665202 |
A. g. gentilis | Sweden | T. Sirotkin | XC628989 |
A. g. gentilis | Finland | L. A. M. Benner | XC186183 |
A. g. gentilis | Finland | E. Paljakka | XC305744 |
A. g. gentilis | Finland | E. Paljakka | XC373099 |
A. g. gentilis | Finland | T. Linjama | XC341720 |
A. g. gentilis | Finland | H. Varkki | XC546384 |
A. g. gentilis | United Kingdom | G. Elton | XC617102 |
A. g. gentilis | United Kingdom | G. Elton | XC618956 |
A. g. gentilis | United Kingdom | P. Stronach | XC572464 |
A. g. gentilis | United Kingdom | P. Stronach | XC623478 |
A. g. gentilis | United Kingdom | S. Elliott | XC591235 |
A. g. gentilis | United Kingdom | T. Lowe | XC695135 |
A. g. gentilis | Netherlands | S. Bot | XC31651 |
A. g. gentilis | Netherlands | H. van der Meer | XC95713 |
A. g. gentilis | Netherlands | T. Fijen | XC126643 |
A. g. gentilis | Netherlands | B. Gras | XC199775 |
A. g. gentilis | Netherlands | J. van Bruggen | XC308130 |
A. g. gentilis | Netherlands | J. van Arneym | XC328061 |
A. g. gentilis | Netherlands | J. van Bruggen | XC361645 |
A. g. gentilis | Netherlands | F. Roos | XC416502 |
A. g. gentilis | Netherlands | R. de By | XC551452 |
A. g. gentilis | Belgium | F. Verbelen | XC98943 |
A. g. gentilis | Belgium | S. Cooleman | XC693275 |
A. g. gentilis | Belgium | D.F. Martinez | XC713496 |
A. g. gentilis | Germany | V. Arnold | XC72816 |
A. g. gentilis | Germany | V. Arnold | XC73002 |
A. g. gentilis | Germany | L. Lachmann | XC331689 |
A. g. gentilis | Germany | brickegickel | XC370973 |
A. g. gentilis | Germany | A. Ortiz Troncoso | XC401498 |
A. g. gentilis | Germany | B. Saadi-Varchmin | XC440310 |
A. g. gentilis | Germany | brickegickel | XC442629 |
A. g. gentilis | Germany | K-U Tielman | XC475347 |
A. g. gentilis | Germany | M. Waldeck | XC509242 |
A. g. gentilis | Germany | F. Holzapfel | XC544505 |
A. g. gentilis | Germany | S. Kransel | XC650705 |
A. g. gentilis | Germany | W. Agster | XC685091 |
A. g. gentilis | Germany | brickegickel | XC710926 |
A. g. gentilis | Poland | J. Matusiak | XC102848 |
A. g. gentilis | Poland | K. Deoniziak | XC181140 |
A. g. gentilis | Poland | P. Szczypinski | XC181823 |
A. g. gentilis | Poland | T. Tumiel | XC215067 |
A. g. gentilis | Poland | J. Matusiak | XC309591 |
A. g. gentilis | Poland | J. Matusiak | XC309596 |
A. g. gentilis | Poland | J. Matusiak | XC406834 |
A. g. gentilis | Poland | I. Oleksik | XC600687 |
A. g. gentilis | Poland | J. Matusiak | XC626012 |
A. g. gentilis | Poland | J. Matusiak | XC627173 |
A. g. gentilis | Poland | I. Oleksik | XC627730 |
A. g. gentilis | Poland | J. Matusiak | XC631750 |
A. g. gentilis | France | J. Berteau | XC388950 |
A. g. gentilis | France | J. Hervé | XC425339 |
A. g. gentilis | France | J. Hervé | XC425936 |
A. g. gentilis | France | J. Hervé | XC428837 |
A. g. gentilis | France | B. Van Hecke | XC543700 |
A. g. gentilis | France | V. Palomares | XC545490 |
A. g. gentilis | France | S. Wroza | XC619727 |
A. g. gentilis | France | S. Wroza | XC627256 |
A. g. gentilis | Switzerland | P. Christe | XC302363 |
A. g. gentilis | Spain | J. G. Sáez | XC709596 |
A. g. gentilis | Spain | Sergi | XC700706 |
A. g. gentilis | Urzhumka, Russia | A. Lastukhin | XC109711 |
A. g. gentilis | Mari El Republic, Russia | A. Lastukhin | XC167479 |
A. g. gentilis | Chuvashia, Russia | A. Lastukhin | XC306147 |
A. g. schvedowi | Khinganskiy Zapovednik, Russia | A. Thomas | XC378250 |
A. g. fujiyamae | Japan | A. Torimi | XC320249 |
A. g. atricapillus | Quebec, Canada, | F. Cloutier | ML342036571 |
A. g. atricapillus | Quebec, Canada, | M. Vachon | ML352729551 |
A. g. atricapillus | Maine, USA | A. Spencer | XC49345 |
A. g. atricapillus | Maine, USA | T. Brooks | XC59174 |
A. g. atricapillus | Maine, USA, | C. Duncan | ML82371 |
A. g. atricapillus | New Hampshire, USA | L. Burford | XC567216 |
A. g. atricapillus | Vermont, USA, | L. Holmes | ML240620231 |
A. g. atricapillus | Massachusetts, USA | T. Spahr | XC183577 |
A. g. atricapillus | New York, USA | L. Elliott |
|
A. g. atricapillus | New York, USA, | M. Epstein | ML360314421 |
A. g. atricapillus | New York, USA, | P.P. Kellogg | ML4150 |
A. g. atricapillus | Ontario, Canada | M. Brigham |
|
A. g. atricapillus | Ontario, Canada, | F. Pinilla | ML416445881 |
A. g. atricapillus | Ontario, Canada, | S. Craig | ML344414941 |
A. g. atricapillus | Michigan, USA, | A. Simon | ML357433541 |
A. g. atricapillus | Michigan, USA, | D. Haan | ML240023181 |
A. g. atricapillus | Michigan, USA, | K. Vande Vusse | ML105522131 |
A. g. atricapillus | Alaska, USA | A. Spencer | XC185619 |
A. g. atricapillus | Alaska, USA | J. Saunders | ML280504581 |
A. g. atricapillus | Alaska, USA | M. Andersen | ML132244 |
A. g. atricapillus | Washington, USA | B. Lagerquist | XC586893 |
A. g. atricapillus | Oregon, USA | G.A. Keller |
|
A. g. atricapillus | Oregon, USA | D. Herr | ML63118 |
A. g. atricapillus | Idaho, USA | Naomi | XC711109 |
A. g. atricapillus | Nevada, USA | B. Wilcox | XC369692 |
A. g. atricapillus | Nevada, USA | R. E. Webster | XC270158 |
A. g. atricapillus | Utah, USA | K. Colver |
|
A. g. atricapillus | Colorado, USA | D. Tønnessen | ML175106421 |
A. g. atricapillus | Colorado, USA | G. Goodrich | ML255141781 |
A. g. atricapillus | Colorado, USA | K.M. Dunning | ML144074751 |
A. g. atricapillus | locality unknown | T. Sander |
|
A. g. apache | Arizona, USA | K. Blankenship | XC330757 |
A. g. apache | Arizona, USA | G.A. Keller |
|
A. g. apache | Arizona, USA | J. C. Arvin | FLMNH12059 |
A. g. apache | New Mexico, USA | J. Swackhamer | XC319149 |
A. g. apache | New Mexico, USA | J. McCullough | ML258120351 |
A. g. laingi | Haida Gwaii, Canada | G. Morigeau | XC126082 |
A. henstii | Madagascar | D. Lane | XC026465 |
A. henstii | Madagascar | H. Matheve | XC155062 |
A. henstii | Madagascar | T. Mark | XC156686 |
A. henstii | Madagascar | P. Gregory | XC158244 |
A. henstii | Madagascar | M. Nelson | XC162904 |
A. henstii | Madagascar | R. Gallardy | XC419026 |
A. henstii | Madagascar | P. Huguet | Huguet & Chappuis (2003) |