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Abstract

The Old World sparrows include some of the best-studied passerine species, such as the cosmopolitan human commensal, the house 
sparrow (Passer domesticus) as well as poorly studied narrow-range endemics like the Iago sparrow (P. iagoensis) from the Cape 
Verde Archipelago or specialists from extreme environments like the desert sparrow (P. simplex). It is therefore notable that to date 
the most complete phylogenetic hypothesis for the Old World sparrows comprised only ten of 43 currently accepted species. With 
this study we provide an updated phylogeny of Passeridae covering about two third of the family’s species richness. Though still be-
ing far from taxon-complete, this new phylogenetic hypothesis provides firm evidence to clarify some open taxonomic questions. All 
genus-level taxa were reciprocally monophyletic with strong support. Contrary to previous classifications, bush sparrows and rock 
sparrows were not sister taxa, and therefore their classification in separate genera Gymnoris and Petronia is justified. Plumage color 
traits like the yellow throat patch of the latter two genera or head color pattern in Passer species do not provide reliable phylogenetic 
information, except for the large-sized African grey-headed sparrows that resulted as a monophyletic group (P. diffusus, P. griseus, P. 
gongoensis). Unexpectedly, two small-sized species, P. eminibey and P. luteus that to date are regarded as close relatives were firmly 
nested in two separate clades of Passer sparrows. Therefore, their separate generic treatment under Sorella eminibey and Auripasser 
luteus (together with A. euchlorus) does not seem justified.
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Introduction

The Old World sparrows, Passeridae, are a speciose pas-
serine family distributed all over the Afrotropics, the 
Palearctic and parts of the Oriental Region. Throughout 
the entire Old World, only the Australian Region and 
Madagascar are not inhabited by any species of the fami-
ly – except the human-introduced house sparrow. Several 
species are highly adapted to extreme environments such 
as the snowfinches (Montifringilla, Pyrgilauda and Ony-
chostruthus) from the high alpine ecosystems of Eurasian 
mountain systems (Lei et al. 2014; Päckert et al. 2020). 
Recent comparison of high-quality genomes provided ev-
idence of divergent adaptation to local selective pressures 
in each of the three snowfinch genera (Qu et al. 2021). 
Also, the extremely hot and dry Sahara harbors suitable 
habitat for specialists like the Desert sparrow, Passer sim-
plex. Areas of highest species richness are located in the 
African Rift Valley and at the eastern margin of the Qing-
hai-Tibet Plateau (QTP) (Fig. 1).

Though formerly included in Passeridae (e.g. Dick-
inson 2003), the sparrow-weavers (genera Plocepasser, 
Histurgops, Pseudonigrita and Philetarius) had often 
been affiliated to the Ploceidae based on morphological 
features like tongue musculature (Bock and Morony Jr 
1978; Summers-Smith 2010). Recent phylogenies by 
de Silva et al. (2017, 2019) confirmed the inclusion of 
sparrow-weavers in Ploceidae (compare also Jønsson 
and Fjeldså 2006) in accordance with most taxonomic 
authorities (Dickinson and Christidis 2014; del Hoyo 
and Collar 2016; Clements et al. 2019; Gill et al. 2020). 
The Passeridae are characterized by several synapomor-
phies of tongue morphology, too (Bock and Morony Jr 
1978) and representatives of major genera (Montifringil-
la, Passer and Petronia) belong to a monophyletic group 
that was consistent across several recently published 
phylogenies (e.g. Ericson and Johansson 2003; Zuccon 
et al. 2012).

To date, the Passeridae are generally classified into 
eight genera, four of them monotypic (Hypocryptadius, 
Carpospiza, Petronia and Onychostruthus), with a total 
number of 43 currently accepted species (according to the 
IOC World Bird List by Gill et al. 2020). Among these, 
Passer is the most diverse genus with 28 currently recog-
nized species (del Hoyo and Collar 2016; Gill et al. 2020), 
of which the house sparrow, Passer domesticus (Fig. 2C), 
is probably one of the best studied species (reviews in 
Anderson 2006; Liebl et al. 2015), not least because as 
a commensal of human civilization it is fairly common 
all over its range (Sætre et al. 2012). Moreover, past and 
extant hybridization of the house sparrow with other con-
specifics has been intensively studied on a genetic basis 
with respect to the stabilized hybrid form Passer italiae 
(Elgvin et al. 2011, 2017; Hermansen et al. 2011, 2014; 
Eroukhmanoff 2013, 2017; Sætre et al. 2017; Runemark 
et al. 2018), to distinct genetic lineages in Asia (Ravinet 
et al. 2018) and to the mosaic hybrid zone with the Span-
ish sparrow, P. hispaniolensis, in North Africa (Belkacem 
et al. 2016; Päckert et al. 2019).

In contrast, the phylogenetic relationships among gen-
era and species of Passeridae are poorly studied to date, 
which is mainly due to a lack of data from the Afrotropics. 
Recently, it came out as a rather surprising finding, that 
the Philippine endemic cinnamon ibon, Hypocryptadius 
cinnamomeus, was sister to a clade of Passeridae species 
(Fjeldså et al. 2010). Previously, that Philippine endem-
ic had been included in the white-eyes (Zosteropidae), 
however based on molecular phylogenetic evidence this 
species is included in Passeridae by several taxonomic 
authorities today (del Hoyo and Collar 2016; Gill et al. 
2020). 

A first phylogenetic hypothesis for Passeridae was 
based on a single mitochondrial gene (Allende et al. 
2001) and included only eleven species. Since then, a 
few molecular studies focused on the phylogenetic rela-
tionships of snowfinches (Onychostruthus, Pyrgilauda, 
Montifringilla [Fig. 2A]), a group of eight high alpine 
endemic species from the QTP and from other Palearctic 
mountain systems (Qu et al. 2006; Gebauer et al. 2006; 
Lei et al. 2014; del Mar Delgado et al. 2019; Päckert et 
al. 2020). However, to date no multi-locus analysis has 
ever been performed for a broader taxon sampling across 
different genera of Passeridae. The most comprehensive 
phylogenetic hypothesis available for Passeridae by Jøns-
son and Fjeldså (2006; their Passeroidea clade 8) includ-
ed 14 species from three genera.

As a contribution to the current discussion on phylo-
genetic relationships within Passeridae, we provide a 
new phylogenetic hypothesis for 18 species of Old World 
sparrows (Passer) and another 11 species of African 
bush-sparrows (Gymnoris), rock sparrows (Petronia, 
[Fig. 2B]) and snowfinches (Onychostruthus, Pyrgilauda, 
Montifringilla) from the Qinghai-Tibet Plateau and other 
Palearctic mountain systems.

Methods

We amplified and sequenced four molecular markers using 
65 samples from 22 species of the Passeridae genera Pass-
er, Petronia, Gymnoris, Montifringilla, Pyrgilauda and 
Onychostruthus. Based on previous evidence of intraspe-
cific diversification from Päckert et al. (2020) we included 
some additional subspecific taxa of Montifringilla nivalis 
and Petronia petronia (Table 1), further samples from dif-
ferent island populations of the Cape Verde endemic Iago 
sparrow (Passer iagoensis; Fig. 2D) and from the range of 
overlap of two of the smaller snowfinch species (Pyrgilau-
da blanfordi and P. davidiana; further samples for intra-
specific comparison, see supplementary Table S1).

We extracted DNA from frozen blood or tissue sam-
ples using the innuPREP DNA Mini Kit (for muscle tis-
sue) or the innuPREP BloodDNA Mini Kit (for blood), 
respectively (both Analytik Jena AG, Germany) accord-
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Figure 1. Diversity heat map of Old World sparrows (Passeridae) with two hotspots of diversity in the African Rift Valley and at the 
eastern margin of the Qinghai-Tibet Plateau; modified from Päckert et al. (2020).

Figure 2. Selected study species of Old World sparrows, Passeridae; A) white-winged snowfinch, Montifringilla nivalis (photo: DL, 
Gobi Altai, Mongolia); B) rock sparrow, Petronia petronia, at nesting hole (photo: MP, China Qinghai); C) house sparrow, Passer 
domesticus (photo: MP, Greece, Santorini); D) Iago sparrow, Passer iagoensis; (photo: SH, Cape Verde Islands).
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ing to the manufacturer’s instructions except for over-
night incubation of tissue with proteinase K (instead of 
one hour).

We amplified and sequenced the mitochondrial cyto-
chrome-b (cyt-b) for all samples available for compari-
son with the Passer phylogeny by Allende et al. (2001). 
For multi-locus reconstruction we sequenced one further 
mitochondrial gene, NADH-dehydrogenase subunit2 
(ND2) and two nuclear introns, myoglobin-intron2 (myo) 
and ornithine-decarboxylase intron7 (ODC). Primers and 
PCR protocols are documented in Päckert et al. (2020). 
PCR products were purified using ExoSap-IT (GE 
Healthcare; adding 0.1 mL ExoSap-IT solution in 4 mL 
H2O to each sample; 37 °C for 30 min, 94 °C for 15 min). 
The sequencing of the PCR products was performed with 
BigDyeTM 3.1 Dye Terminator Cycle Sequencing Kits 
(Applied Biosystems), according to the manufacturers’ 
instructions. Cycle sequencing products were purified 
by salt/ethanol precipitation or by using Sephadex (GE 
Healthcare, Munich, Germany), and sequenced in both 
directions on an ABI 3130xl DNA sequencer.

We aligned forward and reverse Sanger sequences for 
each gene by ClustalW using MEGA 5.1 (Tamura et al. 
2011) and we cross-checked the respective electrophero-
grams with Chromas v.2.6.5 (Technelysium Pty Ltd) for 
possible inaccuracies due to sequencing or reading errors. 
For each marker per sample, we manually combined se-
quences of both reading directions to a single consensus 
sequence. All sequences used for analysis were deposited 
at GenBank (Table 1).

Newly generated sequences were incorporated in a 
sequence alignment for Passeroidea from Päckert et al. 
(2016, 2020), including outgroup taxa from closely re-
lated families Ploceidae, Viduidae, Estrildidae and Uro-
cynchramidae (Table 1). The final alignment comprised 
3485 base pairs (cyt-b: 1041 bp; ND2: 1041 bp; myo: 
732 bp; ODC: 671 bp). We complemented our sequence 
data set for Passeridae with sequence data from GenBank 
for eight species missing from our sampling including the 
cinnamon ibon, Hypocryptadius cinnamomeus (Table 1). 
Altogether, our final data set comprised 30 species of Pas-
seridae among these 18 out of 28 currently recognized 
species from genus Passer (del Hoyo and Collar 2016). 
These are more than two third of all species from this 
genus (see Table 1) and twice as many species-level taxa 
compared to the most recent phylogenetic hypothesis for 
Passeridae (Jønsson and Fjeldså 2006). For hierarchical 
outgroup rooting we used the waxwing, Bombycilla gar-
rulus (compare Päckert et al. 2020).

We reconstructed multi-locus phylogenies using Bay-
esian inference of phylogeny BEAST vers. 1.8.1 (Drum-
mond et al. 2012) and Maximum Likelihood (ML) using 
RAXML (Stamakakis 2006, 2014). We relied on the parti-
tioning scheme applied to the Passeroidea data set by Päck-
ert et al. (2020) who included Passeridae with 26 species. 
According to their estimates using PARTITIONFINDER 
(Lanfear et al. 2012) the best-fit partition scheme was a 
nine-partition scheme by gene and codon: ND2, 1041 bp, 
three partitions by codon position, GTR +Γ+I model; cy-
tochrome-b, 1041 bp, three partitions by codon position, sa
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GTR +Γ+I model; myo, 730 bp, one partition, HKY+Γ 
model; ODC, 643 bp, one partition, GTR+Γ model.

For inference of divergence times estimates, we ap-
plied a molecular clock calibration using mean substitu-
tion rate estimates for the two mtDNA markers estimat-
ed by Lerner et al. (2011) for Hawaiian honeycreepers 
(Drepanidinae): cyt-b= 0.014; ND2= 0.029 (both in in 
substitutions per site per lineage per million years). The 
cyt-b rate applied here ranges at a similar dimension like 
the empirical cyt-b rate of 0.0105 evaluated by Weir and 
Schluter (2008).

We performed three independent runs with BEAST 
for 30,000,000 generations (parameters were logged and 
trees sampled every 3,000 generations) under the uncor-
related lognormal clock model for all loci with the “au-
to-optimize” option activated and a birth-death process 
prior applied to the tree. We combined log files and tree 
files from independent BEAST runs with used LOG-
COMBINER v.1.8.1 and checked the combined log file 
in TRACER v. 1.4 (Rambaut and Drummond 2007) to 
ensure adequate ESS files for all parameters (all ESS > 
200). All obtained phylograms were edited in FIGTREE 
vers. 1.4.2 (Rambaut 2009).

For illustration of intra- and interspecific genetic varia-
tion and divergence of selected species, we reconstructed 
unrooted minimum parsimony networks with PopART 
(http://popart.otago.ac.nz) using the “tcs network” algo-
rithm (Clement et al. 2000). We calculated uncorrected 
pairwise p-distances (based on cytochrome-b sequences) 
using MEGA 5.1.

Results

The Old World sparrows resulted as a strongly supported 
monophyletic group from all analyses and were sister to 
another well supported clade including weavers (Plocei-
dae), Przewalski’s finch (Urocynchramus pylzowi), estril-
did finches and wydahs (Estrildidae and Viduidae; Fig. 3). 
The subclade of Passeridae is shown in Fig. 4. The basal 
split in Old World sparrows was dated to approximately 
17.5 mya and separated the cinnamon ibon (Hypocrypta-
dius cinnamomeus) from all other Passeridae. These were 
divided into two major clades.

Clade I showed a deep split at about 10 mya between 
the rock sparrows (genus Petronia; clade Ia) and the snow-
finches (Montifringilla, Pyrgilauda, Onychostruthus; 
clade Ib, Fig. 4). The latter three snowfinch genera start-
ed diversifying at about 6.9 mya, a sister-group relation-
ship between Montifringilla and Pyrgilauda (with Ony-
chostruthus as the earliest offshoot) received only poor 
support (Fig. 4; clade Ib). However, the clade uniting 
Montifringilla and Pyrgilauda was characterized by a 
shared 3-bp deletion in myoglobin intron 2, whereas the 
Pyrgilauda clade was characterized by another 4-bp in-
sertion in the same intron marker (Fig. 4).

Clade II includes the sister genera Passer (IIa) and 
Gymnoris (IIb) and each of them with strong node sup-

port. Members of Clade II shared a 23-bp deletion in 
ODC intron 7 (Fig. 4) and all members of Passer shared 
another 4-bp deletion in myo intron 2 (Fig. 4). Contrary 
to traditional systematic classification, the yellow-throat-
ed species of bush sparrows (Gymnoris) and rock spar-
rows (Petronia) were not closest relatives in the Passeri-
dae phylogeny (Fig. 4).

Old World sparrows of genus Passer were also divided 
into two strongly supported clades. One entirely Afrotrop-
ical clade included seven species from Sub-Saharan Afri-
ca. One Sub-Saharan subclade included three species of 
grey-headed sparrows (Fig. 4: P. griseus, P. diffusus and 
P. gongoensis). Except for that monophyletic group of 
grey-headed sparrows, head color pattern does not reflect 
monophyletic units in the Passer clade (Fig. 4), which is 
once more in contrast to previous superspecific classifica-
tions. The second subclade united two species from South 
Africa (P. melanurus, P. motitensis) with the small-sized 
chestnut sparrow (P. eminibey) from East Africa. The 
Afrotropical Passer clade was sister to a second moder-
ately supported clade that comprised 12 species from the 
Palearctic and the Oriental Region that started diversify-
ing at about 5.5 mya (Fig. 4). Phylogenetic relationships 
among members of that clade were ambiguous because of 
poor support values for many nodes. A basal split sepa-
rated the Asian russet sparrow (P. cinnamomeus) from the 
remaining Passer species. Two further ancient offshoots 
of the Palearctic/Oriental clade, the widespread tree spar-
row (P. montanus) and the Central Asian Saxaul sparrow 
(P. ammodendri) received moderate and poor support, re-
spectively. Another poorly supported Afro-Arabian clade 
of four sparrow species united the Saharan desert sparrow 
(P. simplex), the Sudan golden sparrow (P. luteus) from 
the Sahel Region, the Dead Sea sparrow (P. moabiticus) 
from the Near East and the Middle East and the Cape 
Verde endemic Iago sparrow (P. iagoensis)(Fig. 4). In the 
latter, no clear phylogeographic structure among island 
populations could be observed in the maximum parsimo-
ny network of five cyt-b haplotypes (Fig. 5C). Finally, a 
well-supported terminal clade united four closely related 
species that started diversifying in the early Pleistocene: 
the house sparrow (P. domesticus), the Spanish sparrow 
(P. hispaniolensis), the Italian sparrow (P. italiae) and the 
Socotra sparrow (P. insularis) (Fig. 4). The sister-group 
relationship of the Southeast Asian plain-backed sparrow 
(P. flaveolus) to that terminal clade received moderate 
support.

High intraspecific differentiation with split ages esti-
mated at 2.3–2.7 Ma was found in two species of clade I: 
Both Petronia petronia and Montifringilla nivalis showed 
a deep split between European and Asian lineages (Fig. 4). 
Paraphyly of M. nivalis with respect to its Tibetan conge-
ner M. adamsi was only poorly supported. European and 
Asian populations of the white-winged snowfinch (M. ni-
valis) appeared as two distinct clusters in the cyt-b haplo-
type network separated by a minimum of 22 substitutions 
(Fig. 5A). Uncorrected pairwise distances between the 
European and the Asian mitochondrial lineage ranged be-
tween 4.9–5.1% (cyt-b) at the same p-distance level like 
interspecific comparison between M. nivalis and M. ad-

http://popart.otago.ac.nz
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amsi (4.5–4.8%; cyt-b). Similarly, uncorrected p-distanc-
es between rock sparrow populations from Spain (P. p. 
petronia) and from China (P. p. brevirostris) were as high 
as 4.8% (cyt-b; compare the deep split in Fig. 4). In the 
small-sized species of genus Pyrgilauda, one specimen 
of Père David’s snowfinch, P. davidiana, was sister to a 
syntopic P. blanfordi specimen instead to a conspecific 
specimen from the northern allopatric part of the breeding 
range (Fig. 4; however this grouping was not supported in 
the RAXML tree that united both P. davidiana sequences 
in a poorly supported clade). The haplotype network for 
a larger set of Pyrgilauda samples showed that regardless 
of phenotypic species identification all specimens from 
the region of sympatry at Koko Nor in northern Qinghai 
belonged to one haplotype cluster that was separated from 
another distantly related P. davidiana haplotype (shared 
by two specimens of unknown origin) by 37 substitutions 
(Fig. 5B). The Koko Nor cluster had a star-like structure 
with eight tip haplotypes and a central haplotype shared 
by eleven individuals of both species (P. davidiana and 
P. blanfordi).

Discussion

To date, there is no comprehensive phylogeny of Old 
World sparrows (Passeridae) available except for a sin-
gle-locus tree covering about 40% of the currently ac-
cepted species (Allende et al. 2001) and a Passeridae 
clade from a supertree by Jønsson and Fjeldså (2006) 
which was largely based on the same sequence informa-
tion (see below). Though our new phylogeny still miss-
es ten out of 28 Passer species we are covering 30 of 
43 currently accepted species of Passeridae (about 70%) 
and several clear conclusions can be drawn from this new 
(though still incomplete) phylogenetic hypothesis. Most 
importantly, our results confirm the monophyly of the 
genera Gymnoris, Passer, Montifringilla and Pyrgilauda 
(the remaining genera are monotypic). This is particularly 
relevant with respect to the taxonomic treatment of bush 
sparrows and rock sparrows.

Bush sparrows and rock sparrows

Bush sparrows (Gymnoris) have long been merged in 
one genus Petronia together with rock sparrows (Wolters 
1952; Vaurie 1956; Stephan 2000; Summers-Smith 2010: 
fig. 113). In their Illustrated Checklist of the Birds of the 
World del Hoyo and Collar (2016) classified bush spar-
rows in a separate genus Gymnoris but added a side remark 
that these species were “often merged into Petronia”. 
Until recently, congeneric treatment of these species was 
even reflected by vernacular names, such as “bush petro-
nia” and “rock petronia” (P. dentata and P. petronia, in 
Clements et al. 2017, 2019, with reference to Rasmussen 
and Anderton 2005 and to Praveen et al. 2016). A distinc-
tive yellow throat patch that is shared by bush sparrows 
and rock sparrows might have been the major common 
trait to mislead taxonomists and to treat those species 
under the same genus name (Fig. 4). However, Roselaar 
(1995) suggested a recognition of Gymnoris as a genus 
of its own for major differences from Petronia petronia 
in other plumage traits, habitat preferences and behavior 
(see also Summers-Smith 2010). This recommendation 
was discussed by the Taxonomic Advisory Committee of 
the Association of European Records and Rarities (AERC 
TAC 2003), however, they stressed the need of a reliable 
phylogenetic framework and postponed a decision on this 
“pending category”. Despite this lack of evidence from 
phylogenetic studies, several taxonomic authorities later 
restricted Petronia to the type species (the rock sparrow, 
P. petronia) and subsumed bush sparrows under Gymno-
ris (del Hoyo and Collar 2016; Gill et al. 2020). Jønsson 
and Fjeldså (2006) who to date provided the most com-
plete phylogenetic hypothesis for Passeridae [their Passe-
roidea clade 8] could not show the paraphyly of Petronia 
sensu lato because their tree included only two species 
from this group, Petronia petronia and Gymnoris pyrgita. 
These two formed a monophyletic group of the Passe-
roidea tree (Jønsson and Fjeldså, 2008) which might be 
an effect of incomplete taxon sampling. Density of taxon 

Figure 5. Haplotype networks showing intra- and interspecific 
variation of A) the white-winged snowfinch, Montifringilla ni-
valis (including the sequence data set by Resano-Mayor et al. 
2016) based on 341 bp cytochrome-b (n= 87); B) Blanford’s 
snowfinch and Père David’s snowfinch (Pyrgilauda blanfordi, 
P. davidiana), based on 819 bp cytochrome-b (n=23); C) the 
Cape Verde endemic Iago sparrow (Passer iagoensis) compared 
to the house sparrow (P. domesticus; population from east-
ern Germany from Päckert et al. 2019) based on 773 bp ND2 
(n=29).
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sampling has been repeatedly evaluated as one of the cru-
cial factors affecting the accuracy of phylogenetic analy-
ses and the resulting topologies (Zwickl and Hillis 2002; 
Heath et al. 2008; Albert et al. 2009; Nabhan and Sarkar 
2011; Wiens and Tiu 2012; Tritsch et al. 2017). Though 
important for our phylogeny we still failed to include the 
yellow-spotted bush sparrow (G. pyrgita) from the Sahel 
Region, however, our tree topology clearly rejects a sister 
group relationship of the three remaining Gymnoris spe-
cies and Petronia petronia and therefore supports their 
taxonomic treatment in different genera. Jønsson and 
Fjeldså (2006) had apparently included G. pyrgita as the 
sole bush sparrow species in their supertree (see above), 
however, the source of sequence information could not 
be inferred from the documentation in their paper. To 
date, there is no sequence data available for this species 
at Genbank.

Rock sparrows (Petronia) were consistently revealed 
as sister to snowfinches (Montifringilla and allies) and are 
therefore part of a trans-Eurasian alpine radiation (Päck-
ert et al. 2020; this study) whereas bush sparrows (Gym-
noris) represent a subtropical/tropical radiation across 
the Afrotropics, the Middle East and southern Asia (this 
study).

Snowfinches

Snowfinches were shown to represent a monophyletic 
group in previous phylogenetic studies (Qu et al. 2006; 
Lei et al. 2014; both based on cyt-b and myoglobin intron 
2). Like the previous studies, our four-gene phylogeny 
did not fully resolve their intergeneric relationships and 
provided only poor support of a sister-group relation-
ship of Pyrgilauda and Montifringilla. Future studies 
based on genome-wide SNPs may shed light on this. All 
snowfinch species except M. nivalis are endemics of the 
Qinghai-Tibet Plateau with a large area of sympatry at its 
eastern margin (Fig. 1). In this region, in the vicinity of 
Qinghai Lake we found indications of mitochondrial in-
trogression of P. blanfordi haplotypes into phenotypic P. 
davidiana. Though this conclusion certainly needs further 
support from population genetic analyses based on nucle-
ar markers, introgression and gene flow was documented 
for several regions where two sparrow species come into 
secondary contact (Elgvin et al. 2011; Hermansen et al. 
2011, 2014; Belkacem et al. 2015; Gedeon et al. 2015; 
Päckert et al. 2019).

Since long, there is firm evidence from previous phy-
logenies of a placement of snowfinches in sparrows (Pas-
seridae) rather than in finches (Fringillidae) – unlike for 
example other high-alpine specialists from the same re-
gion, the mountain finches (Leucosticte). These are in-
deed members of Fringillidae (Zuccon et al. 2010) and 
represent a recent radiation of East Asian faunal elements 
to the Nearctic (Päckert et al. 2020). Despite many re-
cent changes of vernacular names, Gebauer et al. (2006) 
were the only authorities who used the names “moun-
tain-steppe sparrows” (for Pyrgilauda) and “snow spar-
rows” (for Montifringilla), which is in good accordance 

with their sister clade, the rock sparrows (for Petronia). 
However, since the terms “sparrows” and “finches” in 
particular are in use for completely different bird fam-
ilies without any closer relationships (e.g. New World 
sparrows, Passerellidae, are indeed the closest relatives to 
buntings, Emberizidae, and were previously included in 
this family), a correction of vernacular names for snow-
finches might not be recommendable.

Although paraphyly of the white-winged snowfinch, 
Montifringilla nivalis, did not receive strong support, di-
vergence times between the nominate form M. n. nivalis 
and Asian subspecies (M. n. alpicola and M. n. groumgr-
zimaili) equal (and even exceed) those between several 
currently accepted Passer species. In fact, there has been 
a long debate on species-level taxa in Montifringilla: 
Both the black-winged snowfinch and the Tibetan snow-
finch have been previously included in M. nivalis at the 
subspecies level (M. nivalis adamsi: Cramp and Perrins 
1994; M. nivalis henrici: Vaurie 1956; Moreau and Gre-
enway Jr 1962; Portenko and Vietinghoff-Scheel 1974; 
Cheng 1987). A closer relationship among M. nivalis and 
M. adamsi than among M. henrici and each of the latter 
two was already suggested based on morphological traits 
(Eck 1996; Martens and Eck 1995) and was confirmed 
by our phylogeny. Based on the criterion of diagnosabili-
ty (Sangster 2014) with respect to phenotypes (del Hoyo 
and Collar 2016), vocalizations and ecology (Gebauer 
and Kaiser 1994; Gebauer et al. 2006) and mitochondrial 
lineages (Qu et al. 2006; Lei et al. 2014; Päckert et al. 
2020) the three currently accepted Montifringilla species 
are currently separated at the species-level (e.g. Gill et 
al. 2020).

For the time being, we refrain from making any tax-
onomic recommendations for M. nivalis until further 
evidence for another species-level split can be inferred 
from population genetic studies based on a range-wide 
sampling (including missing M. n. leucura from the Near 
East, M. n. gaddi from Iran, M. n. tianshanica from the 
Central Asian mountains and M. n. kwenluensis from the 
Kunlun Shan in southwestern China; del Hoyo and Collar 
2016).

Old World sparrows – the genus Passer

To date, phylogenetic relationships among members of 
the most diverse genus of Passeridae are insufficiently 
resolved and our study can only be considered another 
step further towards a taxon-complete Passer sparrow 
tree. The Passeroidea tree by Jønsson and Fjeldså (2006) 
is a supertree inferred from sequence data from 99 inde-
pendent studies of which Allende et al. (2001) provided 
single-locus data (cytochrome-b) for all ten Passer spe-
cies included in the final supertree. Thus, the phyloge-
netic hypothesis by Jønsson and Fjeldså (2006) is largely 
based on the cytochrome-b-based tree by Allende et al. 
(2001), and since node support values were not provided 
for their supertree, these phylogenetic relationships have 
to be interpreted with maximum caution. Except for the 
grey-headed sparrows, none of the major superspecific 
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classifications in Passer based on phenotypic traits is re-
flected by monophyletic groups in our phylogeny, neither 
the “grey-crested” nor the “brown-headed” sparrows, 
two groups classified by Stephan (2000: “Grauscheitel-
sperlinge” and “Braunkopfsperlinge”). His classification 
was based on a combination of plumage color traits (i.e. 
10 traits of the facial color pattern and 17 gradually vary-
ing color patterns of single contour feathers; Figs 1, 2 
and 3 in Stephan 2000). Based on this combination of 
traits Stephan (2000) came to some rather striking con-
clusions, e.g. he classified the grey-headed P. simplex and 
the entirely yellow-headed “golden-sparrows” (P. luteus 
and P. euchlorus) as ancestral forms of his “brown-head-
ed sparrows” (Fig. 4). However, our phylogeny does 
not support Stephan’s (2000) classification: Members of 
“brown-headed sparrows” and “grey-crested sparrows” 
are scattered across the two major subclades of the Passer 
clade, thus this phenotypic trait is not really informative 
as concerns phylogenetic relationships – as could have 
been expected due to a low phylogenetic signal of many 
morphological traits compared for example to behavioral 
traits, such as bird song (Cicero et al. 2020).

According to our multi-locus phylogeny, two major 
radiations of Old World sparrows started during the late 
Miocene at about 6 Mya. Six species united in a mono-
phyletic group represent a Subsaharan radiation south of 
the equator. The large-sized grey-headed sparrows (P. 
griseus, P. diffusus, P. gongoensis) were often lumped in 
one species, Wolters (1979), however even placed them 
in a separate genus Pyrgitopsis, whereas Summers-Smith 
(2010) united them in one superspecies (Amadon 1964). 
Dickinson and Christidis (2014) treated gongoensis as a 
subspecies of the northern grey-headed sparrow, P. gri-
seus, and separated P. diffusus at the species level (com-
pare Dickinson 2003). However, because in our tree P. 
gongoensis was sister to the southern grey-headed spar-
row, P. diffusus, with strong support (Fig. 4), our phyloge-
netic hypothesis does not support this classification.

The sister clade of the grey-headed sparrows united 
two representatives of the Cape fauna, P. motitensis and 
P. melanurus, with a small-sized East-African species, 
the chestnut sparrow, P. eminibey. This grouping is in-
stantly surprising, because the latter species was regularly 
affiliated with two other small-sized ‘golden sparrows’, 
P. luteus and P. euchlorus. These three have long been 
regarded as rather ancient lineages of Old World sparrows 
without any closer relationships to other Passer species 
(Summers-Smith 2010). Our tree topology does neither 
support a placement of P. eminibey and P. luteus outside 
Passer nor a placement of the chestnut sparrow in a mono-
typic genus Sorella Hartlaub, 1880 (Wolters 1979). The 
great sparrow, P. motitensis, from the Cape Region was 
traditionally affiliated with further Subsaharan sparrow 
taxa. Summers-Smith (2010) distinguished “five allopat-
ric populations” of P. motitensis, Dickinson and Chris-
tidis (2014) included three of them in P. motitensis: P. m. 
chordofanicus, P. m. shelleyi and P. m. rufocinctus. Today, 
they are all separated at the species-level (del Hoyo and 
Collar 2016; Gill et al. 2020) and their phylogenetic rela-
tionships will remain subject to future studies.

The second major clade including twelve Passer spe-
cies represents a larger radiation across the Palearctic and 
the Oriental Region with an early Pliocene onset at about 
5.5. Mya. The East Asian russet sparrow as the earliest 
offshoot from this clade was traditionally known under 
the scientific name Passer rutilans (as such included in 
the phylogenies by Allende et al. 2001 and by Jønsson and 
Fjeldså 2006; see also Clements et al. 2017). However, a 
recent debate on the correct dates of two competing orig-
inal descriptions by C. J. Temminck and J. Gould ended 
up in a broad consent on the priority of the name Passer 
cinnamomeus Gould, 1835 (based on Mlíkovský 2011). 
Except that basal split, the position of the tree sparrow, P. 
montanus, as the second oldest offshoot and further phy-
logenetic relationships in this Eurasian/Oriental clade are 
poorly to moderately supported or even conflicting be-
tween the Bayesian and the maximum likelihood tree. For 
the Cape Verde endemic, P. iagoensis, a close relationship 
with Afrotropical species (P. motitensis and P. melanurus) 
was previously assumed (Stephan 2000), conspecif-
ic classification with P. motitensis was even advocated 
by Wolters (1979) and by Summers-Smith (2010). Our 
phylogenetic hypothesis clearly rejects any closer rela-
tionship of P. iagoensis with these two representatives of 
the Cape fauna, but suggests a closer relationship with P. 
moabiticus from the eastern Mediterranean and the Mid-
dle East and two Afrotropcial species: P. simplex, a des-
ert-dwelling specialist from the Sahara and P. luteus from 
the Sahel Region (however with poor node support). The 
firm placement of the latter in the Passer clade is as un-
expected as that of P. eminibey (see above), and does not 
support a classification of golden sparrows in a separate 
genus Auripasser (Wolters 1979; Summers-Smith 2010). 
Contrary to the traditional classification, our tree topol-
ogy clearly rejected a closer relationship of P. eminibey 
with the Sudan golden sparrow, P. luteus, whereas phy-
logenetic relationships of the Arabian golden sparrow, P. 
euchlorus, remain an open question due to data deficien-
cy (Summers-Smith 2010 included it in the Sudan golden 
sparrow as subspecies P. l. euchlorus). A zone of sym-
patry in western Sudan without evidence of interbreeding 
between P. eminibey and P. luteus also justifies their treat-
ment as separate species (Summers-Smith 2010).

Finally, a well-supported terminal clade represents a 
very recent circum-Mediterranean/ Eurasian radiation of 
the house sparrow, P. domesticus, the Spanish sparrow, 
P. hispaniolensis, the stabilized hybrid form P. italiae 
and the Socotran endemic, P. insularis. According to our 
divergence time estimates, this radiation started during 
the mid-Pleistocene and according to population genet-
ic analyses lineage separation went along with multiple 
independent events of horizontal gene flow between the 
house sparrow and the Spanish sparrow that gave rise to 
several hybrid lineages in the Mediterranean of differ-
ent age and origin (Runemark et al. 2018; Päckert et al. 
2019). A sister-group relationship of the Southeast Asian 
P. flaveolus with the latter circum-Mediterranean quartet 
was only poorly supported. A putative closer relationship 
of P. insularis and P. motitensis as suggested by Sum-
mers-Smith (2010) could be rejected by our phylogeny.
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Conclusions and perspectives

Despite from being far from taxon-complete, this updat-
ed phylogeny contributed further evidence for clarifica-
tion of taxonomic controversy, e.g. the status of Petro-
nia and Gymnoris as separate genera, the monophyly of 
grey-headed sparrows (but not of all grey-crested Passer 
species) or a lack of phylogenetic justification for rec-
ognizing the genera Sorella and Auripasser. We failed 
to include the enigmatic pale rock sparrow, Carpospiza 
brachydactyla, from the Middle East and Central Asia 
that was long regarded as a member of Fringillidae. 
Based on shared traits of tongue morphology inclusion in 
Passeridae was recommended by Bock (2004), generally 
Carpospiza has been affiliated with Petronia sensu lato 
(including Gymnoris), however, it lacks the yellow throat 
patch (being a rather uninformative trait as shown in our 
phylogeny). Also, phylogenetic relationships of missing 
Passer species from India (P. pyrrhonotus), Central Asia 
(P. zarudny), the Socotra archipelago (P. hemileucus) 
and East Africa (P. chordofanicus, P. euchlorus, P. rufo-
cinctus, P. shelleyi, P. suahelicus, P. swainsoni, P. casta-
nopterus) will remain unresolved so far. Recently, the 
narrow-range endemic Somali sparrow, P. castanopterus, 
has attracted ornithologists’ attention for its putative hy-
bridization with the house sparrow, P. domesticus, in the 
areas of range overlap in Somalia (Summers-Smith 2020), 
Ethiopia (Gedeon et al. 2015), Kenya (Turner 2016) and 
Djibouti (Cohen et al. 2011; Hering et al. 2020).
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